initiative
v0.2.8
Published
Let's turn your LLM into Action Models with Zod
Downloads
17
Readme
Initiative
a langchain extension for building simple actions models
Use your zod schema to create a chain of actions and use it with any llm models.
npm install initiative
Usage
npm install initiative zod langchain @langchain/community
Import
import { TogetherAI } from "@langchain/community/llms/togetherai";
const model = new TogetherAI({
modelName: "mistralai/Mixtral-8x7B-Instruct-v0.1", // Recommended model 7B
apiKey: process.env.API_KEY,
});
Schema Definition
import { z } from "zod";
import { Implement, Schema, defaultPrompt } from "initiative";
const userState = {
userSelected: z
.enum(["YES", "NO"])
.transform((x) => `User selected ${x} on text permissions`),
userDragged: z.string().transform((x) => `User dragged ${x} out of the box`),
} satisfies State;
const schema = {
getUserData: z
.function()
.describe("When user want to get the data of any other users")
.args(z.string())
.returns(z.string())
.optional(),
setName: z
.function()
.describe("When user input wants to update his/her name of the user")
.args(z.string())
.returns(z.void())
.optional(),
getTime: z
.function()
.args(z.enum(["NOW"]))
.describe("When user input wants to know the current time")
.returns(z.date())
.optional(),
} satisfies Schema;
type FuncParam = {
ctx: {};
extra: {};
};
const { actionZod, combinedZod, dataZod, stateZod } = getZodCombined(
schema,
userState
);
const init = implement(combinedZod, {
state: userState,
functions: (z: FuncParam, y) => ({
getUserData: async () => `${y?.userDragged}`,
setName: () => {},
getTime: () => new Date(),
}),
examples: [
{
Input: "What the time?",
Output: {
getTime: "NOW",
},
},
{
Input: "Set my name to Rajat",
Output: {
setName: "Rajat",
},
},
{
Input: "Find the person name Keanu",
Output: {
getUserData: "Keanu",
},
},
],
});
Initiate Action Chain with langchain
const chain = await createExtraction(model, init, {
combinedZod,
stateZod,
});
const userStateData = {
userSelected: "YES",
userDragged: "Toy",
};
const response = await chain.invoke("Get time", { state: userStateData });
console.log(response);
Output
{
"input": "Get time",
"response": {
"raw": "\n<json>{\"getTime\":\"NOW\"}</json>",
"validated": {
"data": { "getTime": "NOW" },
"json": { "getTime": "NOW" },
"success": true
}
},
"state": {
"raw": {
"userSelected": "YES",
"userDragged": "Toy"
},
"validated": {
"data": {
"userSelected": "User selected YES on text permissions",
"userDragged": "User dragged Toy out of the box"
},
"success": true
}
}
}
Execute Actions
const recipt = await executeActions(init, response, actionZod, {
permissions: { getTime: true, setName: true, getUserData: true },
params: {
ctx: {},
extra: {},
},
});
console.log(recipt);
Output
{
getTime: {
value: 2024-03-30T19:12:45.614Z,
key: "getTime",
permission: true,
}
}
Chained Action Execution
import { TogetherAI } from "@langchain/community/llms/togetherai";
import { z } from "zod";
import { createExtraction } from "./";
import {
AvailableActions,
executeChainActions,
getZodChainedCombined,
implementChain,
} from "./chain";
import { chainedActionPrompt } from "./lib/prompt";
import { State } from "./state";
const model = new TogetherAI({
modelName: "mistralai/Mixtral-8x7B-Instruct-v0.1",
apiKey: process.env.API_KEY,
});
const Schema = {
searchUserWithName: z
.function()
.describe("When action needs imformation of a user to continue in order. ")
.args(z.object({ name: z.string() }))
.returns(z.string()),
sentEmailToUser: z
.function()
.describe("When action is requisting to sent an email to someone. Pass name of user as param.")
.args(z.object({ name: z.string() }))
.returns(z.string()),
} satisfies AvailableActions;
const userState = {
userSelected: z
.enum(["YES", "NO"])
.transform((x) => `User selected ${x} on text permissions`),
userDragged: z.string().transform((x) => `User dragged ${x} out of the box`),
} satisfies State;
type FuncParam = {
ctx: {};
extra: {};
};
const userStateData = {
userSelected: "YES",
userDragged: "Toy",
};
const materials = getZodChainedCombined(Schema, userState);
const init = implementChain(Schema, materials, {
functions: (x: FuncParam, y) => ({
searchUserWithName: async ({ name }) => `Found ${name}`,
sentEmailToUser: async ({name}) => `Senting email to ${name}`
}),
examples: [
{
Input: "Find user Rajat",
Output: [{ searchUserWithName: { name: "Rajat" } }],
},
{
Input: "Sent email to guy named Alex",
Output: [
{ searchUserWithName: { name: "Alex" } },
{ sentEmailToUser: { name: "Alex" } }
],
},
],
});
const chain = await createExtraction(
model,
init,
{
combinedZod: materials.combinedZod,
stateZod: materials.stateZod,
},
chainedActionPrompt
);
const res = await chain.invoke("Find user Jovit and sent email to him", {
state: userStateData,
});
console.log(res.response.validated?.success ? res.response.validated.data : "");
const x = await executeChainActions(init, res, {
permissions: {
searchUserWithName: true,
sentEmailToUser: true,
},
params: {
ctx: {},
extra: {},
},
});
console.log(x);
Output
Before execution
[
{
searchUserWithName: {
name: "Jovit",
},
}, {
sentEmailToUser: {
name: "Jovit",
},
}
]
After execution
{
searchUserWithName: {
value: "Found Jovit",
key: "searchUserWithName",
iteration: 0,
permission: true,
},
sentEmailToUser: {
value: "Senting email to Jovit",
key: "sentEmailToUser",
iteration: 1,
permission: true,
},
}
Coming Soooooooooooon
- [x] Add support direct actions initiation
- [x] Add support normal zod schema
- [x] Add support async actions
- [x] Add support common cookies and headers
- [x] Add chained actions support for multiple actions
- [x] Proper validation and error handling for revalidation through LLM
- [x] Permission for actions
- [ ] RSC support with vercel/ai SDK
Packages used under the hood
- zod for schema validation
- langchain JS for LLM models chains
- zod-to-ts for converting zod schema to typescript
- zod-validation-error for better human readable errors
- zod_utilz for better zod schema manipulation (superset of zod)