npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

in-browser-ai

v0.0.9

Published

Run modern deep learning models in the browser.

Downloads

11

Readme

In-browser AI

In-browser AI is a TypeScript library that allows you to run modern deep learning models directly in your web browser. You can easily add AI capabilities to your web applications without the need for complex server-side infrastructure.

Features:

  • Easy to use. Create a model with one line of code, get the result with another one.
  • Powered by ONNX runtime. In-browser AI runs the models using ONNX runtime for Web, which has rich support of all kinds of operators. It means that any model will work just fine.
  • Compatible with Hugging Face hub. In-browser AI utilizes model configuration files in the same format as the hub, which makes it even easier to integrate existing models.

Status

The library is under active development. If something does not work correctly, please file an issue on GitHub. Contributions are very welcome.

Sponsors

Continuing work on this project is sponsored by Reflect - awesome app for taking notes.

Model types

Text models

  • Sequence-to-sequence (TextModelType.Seq2Seq). These models are used to transform the text into another text. Examples of such transformations are translation, summarization, and grammar correction.
  • Feature extarction (TextModelType.FeatureExtraction). These models are used to transform the text into an array of numbers - embedding. Generated vectors are useful for semantic search or cluster analysis because embeddings of semantically similar text are similar and can be compared using cosine similarity.

Image models

  • Semantic segmentation (ImageModelType.Segmentation). These models cluster images into parts which belong to the same object class. In other words, segmentation models detect exact shape of the objects in the image and classify them. The example of image segmentation is below.

    Semantic segmentation example

  • Object detection (ImageModelType.ObjectDetection). These models find objects in the images, classify them, and generate bounding boxes for the objects. The example of the object detection is below.

    Object detection example

  • Classification (ImageModelType.Classification). These models do not find exact objects in the images but they only determine what type of object is the most likely in the image. Because of that, this type of models is the most useful when there is only one distinct class of objects present in the image. In the example below, the image is classified as "Egyptian cat".

    Object detection example

Installation

The library can be insatlled via npm:

npm install in-browser-ai

Create model instance

Create model from ID

The first way of creating a model is using the model identifier. This method works only for the built-in models.

For text models:

import { TextModel } from "in-browser-ai";

const result = await TextModel.create("grammar-t5-efficient-tiny")
console.log(result.elapsed)
const model = result.model

For image models:

import { ImageModel } from "in-browser-ai";

const result = await ImageModel.create("yolos-tiny-quant")
console.log(result.elapsed)
const model = result.model

Create model from metadata

The second way to create a model is via the model metadata. This method allows to use custom ONNX models. In this case, we need to use a specific model class. Please note that when creating the model from the metadata, you need to call an init() method before using the model. This is needed to create inference sessions, download configurations files, and create internal structures.

Text models

The metadata for text models is defined by the TextMetadata class. Not all fields are required for the model creation. The minimal example for the Seq2Seq model is:

import { Seq2SeqModel, TextMetadata } from "in-browser-ai";

const metadata: TextMetadata = {
    modelPaths: new Map<string, string>([
      [
        "encoder",
        "https://huggingface.co/visheratin/t5-efficient-tiny-grammar-correction/resolve/main/encoder_model.onnx",
      ],
      [
        "decoder",
        "https://huggingface.co/visheratin/t5-efficient-tiny-grammar-correction/resolve/main/decoder_with_past_model.onnx",
      ],
    ]),
    tokenizerPath: "https://huggingface.co/visheratin/t5-efficient-tiny-grammar-correction/resolve/main/tokenizer.json",
  }

const model = new Seq2SeqModel(metadata);
const elapsed = await model.init();
console.log(elapsed);

The minimal example for the FeatureExtraction model is:

import { FeatureExtractionModel, TextMetadata } from "in-browser-ai";

const metadata: TextMetadata = {
    modelPaths: new Map<string, string>([
      [
        "encoder",
        "https://huggingface.co/visheratin/t5-efficient-tiny-grammar-correction/resolve/main/encoder_model.onnx",
      ],
    ]),
    tokenizerPath: "https://huggingface.co/visheratin/t5-efficient-tiny-grammar-correction/resolve/main/tokenizer.json",
  }

const model = new FeatureExtractionModel(metadata);
const elapsed = await model.init();
console.log(elapsed);

Image models

The metadata for image models is defined by the ImageMetadata class. Not all fields are required for the model creation. The minimal example for all image models is:

import { ImageMetadata } from "in-browser-ai";

const metadata: ImageMetadata = {
    modelPath: "https://huggingface.co/visheratin/segformer-b0-finetuned-ade-512-512/resolve/main/b0.onnx.gz",
    configPath: "https://huggingface.co/visheratin/segformer-b0-finetuned-ade-512-512/resolve/main/config.json",
    preprocessorPath: "https://huggingface.co/visheratin/segformer-b0-finetuned-ade-512-512/resolve/main/preprocessor_config.json",
  }

Then, the model can be created:

import { ClassificationModel, ObjectDetectionModel, SegmentationModel } from "in-browser-ai";

const model = new ClassificationModel(metadata);
// or
const model = new ObjectDetectionModel(metadata);
// or
const model = new SegmentationModel(metadata);

const elapsed = await model.init();
console.log(elapsed);

Data processing

Text models

The processing is done using a process() method.

Seq2Seq models output text:

const input = "Test text input"
const output = await model.process(input)
console.log(output.text)
console.log(`Sentence of length ${input.length} (${output.tokensNum} tokens) was processed in ${output.elapsed} seconds`)

FeatureExtraction models output numeric array:

const input = "Test text input"
const output = await model.process(input)
console.log(output.result)
console.log(`Sentence of length ${input.length} (${output.tokensNum} tokens) was processed in ${output.elapsed} seconds`)

Image models

For the image models, the processing is also done using a process() method.

Segmentation models output HTML canvas, which can be overlayed on the original image:

const input = "https://upload.wikimedia.org/wikipedia/commons/thumb/8/81/Georgia5and120loop.jpg/640px-Georgia5and120loop.jpg"
const output = await model.process(input)
var destCtx = canvas.getContext("2d");
destCtx.globalAlpha = 0.4;
destCtx.drawImage(result.canvas, 0, 0, result.canvas.width, result.canvas.height,
  0, 0, canvas.width, canvas.height);
console.log(output.elapsed)

If you want to determine the class from the output canvas, you can use the getClass() method:

// xCoord and yCoord are coordinates of the target pixel on the canvas
const rect = canvas.getBoundingClientRect();
const ctx = canvas.getContext("2d");
const x = xCoord - rect.left;
const y = yCoord - rect.top;
const c = ctx!.getImageData(x, y, 1, 1).data;
const className = model.instance.getClass(c);
console.log(className);

Object detection models output a list of bounding box predictions along with their classes and colors. Bounding boxes can be used to draw them over the original image:

const input = "https://upload.wikimedia.org/wikipedia/commons/thumb/8/81/Georgia5and120loop.jpg/640px-Georgia5and120loop.jpg"
const output = await model.process(input)
for (let object of output.objects) {
  var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect");
  rect.setAttributeNS(null, "x", (sizes[0] * object.x).toString());
  rect.setAttributeNS(null, "y", (sizes[1] * object.y).toString());
  rect.setAttributeNS(null, "width", (sizes[0] * object.width).toString());
  rect.setAttributeNS(
    null,
    "height",
    (sizes[1] * object.height).toString()
  );
  const color = object.color;
  rect.setAttributeNS(null, "fill", color);
  rect.setAttributeNS(null, "stroke", color);
  rect.setAttributeNS(null, "stroke-width", "2");
  rect.setAttributeNS(null, "fill-opacity", "0.35");
  // svgRoot is a root SVG element on the page
  svgRoot.appendChild(rect);
}

Classification models output an array of predicted classes along with the confidence scores in range [0,1] sorted by confidence in the descending order. When running the process() method, you can specify the number of returned predictions (default is 3):

const input = "https://upload.wikimedia.org/wikipedia/commons/thumb/8/81/Georgia5and120loop.jpg/640px-Georgia5and120loop.jpg"
const output = await model.process(input, 5)
for (let item of output.results) {
  console.log(item.class, item.confidence)
}

Built-in models

Text models

Grammar correction

  • grammar-t5-efficient-mini - larger model for grammar correction (197 MB). Works the best overall.
  • grammar-t5-efficient-mini-quant - minified (quantized) version of the grammar-t5-efficient-mini model. Quantization makes the performance slightly worse but the size is 5 times smaller than the original one.
  • grammar-t5-efficient-tiny - small model for grammar correction (113 MB). Works a bit worse than the larger model but is almost twice smaller.
  • grammar-t5-efficient-tiny-quant - minified (quantized) version of the grammar-t5-efficient-tiny model. Quantization makes the performance slightly worse but the size is 4 times smaller than the original one. It is the smallest model, only 24 MB in total.

Feature extraction

  • t5-efficient-mini - larger model for feature extraction (94 MB). Works the best overall.
  • t5-efficient-mini-quant - minified (quantized) version of the t5-efficient-mini model. Quantization makes the performance slightly worse but the size is almost 3 times smaller than the original one - 38 MB.

Image models

Semantic segmentation

  • segformer-b0-segmentation-quant - the smallest model for indoor and outdoor scenes (3 MB). Provides a decent quality but the object borders are not always correct.
  • segformer-b1-segmentation-quant - larger model for indoor and outdoor scenes (9 MB). Provides good quality and better object borders.
  • segformer-b4-segmentation-quant - the largest model for indoor and outdoor scenes (41 MB). Provides the best quality.

Classification

  • mobilevit-small - small model (19 MB) for classification of a large range of classes - people, animals, indoor and outdoor objects.
  • mobilevit-xsmall - even smaller model (8 MB) for classification of a large range of classes - people, animals, indoor and outdoor objects.
  • mobilevit-xxsmall - the smallest model (5 MB) for classification of a large range of classes - people, animals, indoor and outdoor objects.
  • segformer-b2-classification - larger model for indoor and outdoor scenes (88 MB).
  • segformer-b2-classification-quant - minified (quantized) version of the segformer-b2-classification model (17 MB). Provides comparable results with the original.
  • segformer-b1-classification - smaller model for indoor and outdoor scenes (48 MB).
  • segformer-b1-classification-quant - minified (quantized) version of the segformer-b1-classification model (9 MB). Provides comparable results with the original.
  • segformer-b0-classification - the smallest model for indoor and outdoor scenes (13 MB).
  • segformer-b0-classification-quant - minified (quantized) version of the segformer-b0-classification model (3 MB). Provides comparable results with the original.

Object detection

  • yolos-tiny - small (23 MB) but powerful model for finding a large range of classes - people, animals, indoor and outdoor objects.
  • yolos-tiny-quant - minified (quantized) version of the yolos-tiny model. The borders are slightly off compared to the original but the size is 3 times smaller (7 MB).

Future development

  • Improve grammar correction model.
  • Extend text models beyond T5.
  • Distil Flan-T5-small model to make it more usable in the browser.
  • Add audio models (Whisper-small).