npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

hyperswarm

v4.8.4

Published

A distributed networking stack for connecting peers

Downloads

9,785

Readme

hyperswarm

See the full API docs at docs.holepunch.to

A high-level API for finding and connecting to peers who are interested in a "topic."

Installation

npm install hyperswarm

Usage

const Hyperswarm = require('hyperswarm')

const swarm1 = new Hyperswarm()
const swarm2 = new Hyperswarm()

swarm1.on('connection', (conn, info) => {
  // swarm1 will receive server connections
  conn.write('this is a server connection')
  conn.end()
})

swarm2.on('connection', (conn, info) => {
  conn.on('data', data => console.log('client got message:', data.toString()))
})

const topic = Buffer.alloc(32).fill('hello world') // A topic must be 32 bytes
const discovery = swarm1.join(topic, { server: true, client: false })
await discovery.flushed() // Waits for the topic to be fully announced on the DHT

swarm2.join(topic, { server: false, client: true })
await swarm2.flush() // Waits for the swarm to connect to pending peers.

// After this point, both client and server should have connections

Hyperswarm API

const swarm = new Hyperswarm(opts = {})

Construct a new Hyperswarm instance.

opts can include:

  • keyPair: A Noise keypair that will be used to listen/connect on the DHT. Defaults to a new key pair.
  • seed: A unique, 32-byte, random seed that can be used to deterministically generate the key pair.
  • maxPeers: The maximum number of peer connections to allow.
  • firewall: A sync function of the form remotePublicKey => (true|false). If true, the connection will be rejected. Defaults to allowing all connections.
  • dht: A DHT instance. Defaults to a new instance.

swarm.connecting

Number that indicates connections in progress.

swarm.connections

A set of all active client/server connections.

swarm.peers

A Map containing all connected peers, of the form: (Noise public key hex string) -> PeerInfo object

See the PeerInfo API for more details.

swarm.dht

A hyperdht instance. Useful if you want lower-level control over Hyperswarm's networking.

swarm.on('connection', (socket, peerInfo) => {})

Emitted whenever the swarm connects to a new peer.

socket is an end-to-end (Noise) encrypted Duplex stream

peerInfo is a PeerInfo instance

swarm.on('update', () => {})

Emitted when internal values are changed, useful for user interfaces.

For example: emitted when swarm.connecting or swarm.connections changes.

const discovery = swarm.join(topic, opts = {})

Start discovering and connecting to peers sharing a common topic. As new peers are connected to, they will be emitted from the swarm as connection events.

topic must be a 32-byte Buffer opts can include:

  • server: Accept server connections for this topic by announcing yourself to the DHT. Defaults to true.
  • client: Actively search for and connect to discovered servers. Defaults to true.

Returns a PeerDiscovery object.

Clients and Servers

In Hyperswarm, there are two ways for peers to join the swarm: client mode and server mode. If you've previously used Hyperswarm v2, these were called "lookup" and "announce", but we now think "client" and "server" are more descriptive.

When you join a topic as a server, the swarm will start accepting incoming connections from clients (peers that have joined the same topic in client mode). Server mode will announce your keypair to the DHT, so that other peers can discover your server. When server connections are emitted, they are not associated with a specific topic -- the server only knows it received an incoming connection.

When you join a topic as a client, the swarm will do a query to discover available servers, and will eagerly connect to them. As with server mode, these connections will be emitted as connection events, but in client mode they will be associated with the topic (info.topics will be set in the connection event).

await swarm.leave(topic)

Stop discovering peers for the given topic.

topic must be a 32-byte Buffer

If a topic was previously joined in server mode, leave will stop announcing the topic on the DHT. If a topic was previously joined in client mode, leave will stop searching for servers announcing the topic.

leave will not close any existing connections.

swarm.joinPeer(noisePublicKey)

Establish a direct connection to a known peer.

noisePublicKey must be a 32-byte Buffer

As with the standard join method, joinPeer will ensure that peer connections are reestablished in the event of failures.

swarm.leavePeer(noisePublicKey)

Stop attempting direct connections to a known peer.

noisePublicKey must be a 32-byte Buffer

If a direct connection is already established, that connection will not be destroyed by leavePeer.

const discovery = swarm.status(topic)

Get the PeerDiscovery object associated with the topic, if it exists.

await swarm.listen()

Explicitly start listening for incoming connections. This will be called internally after the first join, so it rarely needs to be called manually.

await swarm.flush()

Wait for any pending DHT announces, and for the swarm to connect to any pending peers (peers that have been discovered, but are still in the queue awaiting processing).

Once a flush() has completed, the swarm will have connected to every peer it can discover from the current set of topics it's managing.

flush() is not topic-specific, so it will wait for every pending DHT operation and connection to be processed -- it's quite heavyweight, so it could take a while. In most cases, it's not necessary, as connections are emitted by swarm.on('connection') immediately after they're opened.

PeerDiscovery API

swarm.join returns a PeerDiscovery instance which allows you to both control discovery behavior, and respond to lifecycle changes during discovery.

await discovery.flushed()

Wait until the topic has been fully announced to the DHT. This method is only relevant in server mode. When flushed() has completed, the server will be available to the network.

await discovery.refresh({ client, server })

Update the PeerDiscovery configuration, optionally toggling client and server modes. This will also trigger an immediate re-announce of the topic, when the PeerDiscovery is in server mode.

await discovery.destroy()

Stop discovering peers for the given topic.

If a topic was previously joined in server mode, leave will stop announcing the topic on the DHT. If a topic was previously joined in client mode, leave will stop searching for servers announcing the topic.

PeerInfo API

swarm.on('connection', ...) emits a PeerInfo instance whenever a new connection is established.

There is a one-to-one relationship between connections and PeerInfo objects -- if a single peer announces multiple topics, those topics will be multiplexed over a single connection.

peerInfo.publicKey

The peer's Noise public key.

peerInfo.topics

An Array of topics that this Peer is associated with -- topics will only be updated when the Peer is in client mode.

peerInfo.prioritized

If true, the swarm will rapidly attempt to reconnect to this peer.

peerInfo.ban(banStatus = false)

Ban or unban the peer. Banning will prevent any future reconnection attempts, but it will not close any existing connections.

License

MIT