npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

hyperparameters

v0.25.6

Published

javascript hyperparameters search

Downloads

739

Readme

ES6 hyperparameters optimization

Build Status dependencies Status devDependencies Status License: MIT

:warning: Early version subject to changes.

Features

  • written in javascript - Use with tensorflow.js as a replacement to your python hyperparameters library
  • use from cdn or npm - Link hpjs in your html file from a cdn, or install in your project with npm
  • versatile - Utilize multiple parameters and multiple search algorithms (grid search, random, bayesian)

Installation

$ npm install hyperparameters

Parameter Expressions

import * as hpjs from 'hyperparameters';

hpjs.choice(options)

  • Randomly returns one of the options

hpjs.randint(upper)

  • Return a random integer in the range [0, upper)

hpjs.uniform(low, high)

  • Returns a single value uniformly between low and high i.e. any value between low and high has an equal probability of being selected

hpjs.quniform(low, high, q)

  • returns a quantized value of hp.uniform calculated as round(uniform(low, high) / q) * q

hpjs.loguniform(low, high)

  • Returns a value exp(uniform(low, high)) so the logarithm of the return value is uniformly distributed.

hpjs.qloguniform(low, high, q)

  • Returns a value round(exp(uniform(low, high)) / q) * q

hpjs.normal(mu, sigma)

  • Returns a real number that's normally-distributed with mean mu and standard deviation sigma

hpjs.qnormal(mu, sigma, q)

  • Returns a value round(normal(mu, sigma) / q) * q

hpjs.lognormal(mu, sigma)

  • Returns a value exp(normal(mu, sigma))

hpjs.qlognormal(mu, sigma, q)

  • Returns a value round(exp(normal(mu, sigma)) / q) * q

Random numbers generator

import { RandomState } from 'hyperparameters';

example:

const rng = new RandomState(12345);
console.log(rng.randrange(0, 5, 0.5));

Spaces

import { sample } from 'hyperparameters';

example:

import * as hpjs from 'hyperparameters';

const space = {
  x: hpjs.normal(0, 2),
  y: hpjs.uniform(0, 1),
  choice: hpjs.choice([
    undefined, hp.uniform('float', 0, 1),
  ]),
  array: [
    hpjs.normal(0, 2), hpjs.uniform(0, 3), hpjs.choice([false, true]),
  ],
  obj: {
    u: hpjs.uniform(0, 3),
    v: hpjs.uniform(0, 3),
    w: hpjs.uniform(-3, 0)
  }
};

console.log(hpjs.sample.randomSample(space));

fmin - find best value of a function over the arguments

import * as hpjs from 'hyperparameters';
const trials = hpjs.fmin(optimizationFunction, space, estimator, max_estimates, options); 

example:

import * as hpjs from 'hyperparameters';

const fn = x => ((x ** 2) - (x + 1));
const space = hpjs.uniform(-5, 5);
fmin(fn, space, hpjs.search.randomSearch, 1000, { rng: new hpjs.RandomState(123456) })
  .then(trials => console.log(result.argmin));

Getting started with tensorflow.js

1. include javascript file

  • include (latest) version from cdn

<script src="https://cdn.jsdelivr.net/npm/hyperparameters@latest/dist/hyperparameters.min.js" />

  • create search space
  const space = {
    optimizer: hpjs.choice(['sgd', 'adam', 'adagrad', 'rmsprop']),
    epochs: hpjs.quniform(50, 250, 50),
  };
  • create tensorflow.js train function. Parameters are optimizer and epochs. input and output data passed as second argument
const trainModel = async ({ optimizer, epochs }, { xs, ys }) => {
  // Create a simple model.
  const model = tf.sequential();
  model.add(tf.layers.dense({ units: 1, inputShape: [1] }));
  // Prepare the model for training: Specify the loss and the optimizer.
  model.compile({
    loss: 'meanSquaredError',
    optimizer
  });
  // Train the model using the data.
  const h = await model.fit(xs, ys, { epochs });
  return { model, loss: h.history.loss[h.history.loss.length - 1] };
};
  • create optimization function
const modelOpt = async ({ optimizer, epochs }, { xs, ys }) => {
  const { loss } = await trainModel({ optimizer, epochs }, { xs, ys });
  return { loss, status: hpjs.STATUS_OK };
};
  • find optimal hyperparameters
const trials = await hpjs.fmin(
    modelOpt, space, hpjs.search.randomSearch, 10,
    { rng: new hpjs.RandomState(654321), xs, ys }
  );
  const opt = trials.argmin;
  console.log('best optimizer',opt.optimizer);
  console.log('best no of epochs', opt.epochs);

2. install with npm

  • install hyperparameters in your package.json
$ npm install hyperparameters 
  • import hyperparameters
import * as tf from '@tensorflow/tfjs';
import * as hpjs from 'hyperparameters';
  • create search space
  const space = {
    optimizer: hpjs.choice(['sgd', 'adam', 'adagrad', 'rmsprop']),
    epochs: hpjs.quniform(50, 250, 50),
  };
  • create tensorflow.js train function. Parameters are optimizer and epochs. input and output data passed as second argument
const trainModel = async ({ optimizer, epochs }, { xs, ys }) => {
  // Create a simple model.
  const model = tf.sequential();
  model.add(tf.layers.dense({ units: 1, inputShape: [1] }));
  // Prepare the model for training: Specify the loss and the optimizer.
  model.compile({
    loss: 'meanSquaredError',
    optimizer
  });
  // Train the model using the data.
  const h = await model.fit(xs, ys, { epochs });
  return { model, loss: h.history.loss[h.history.loss.length - 1] };
};
  • create optimization function
const modelOpt = async ({ optimizer, epochs }, { xs, ys }) => {
  const { loss } = await trainModel({ optimizer, epochs }, { xs, ys });
  return { loss, status: hpjs.STATUS_OK };
};
  • find optimal hyperparameters
const trials = await hpjs.fmin(
  modelOpt, space, hpjs.search.randomSearch, 10,
  { rng: new hpjs.RandomState(654321), xs, ys }
);
const opt = trials.argmin;
console.log('best optimizer',opt.optimizer);
console.log('best no of epochs', opt.epochs);

License

MIT © Atanas Stoyanov & Martin Stoyanov