npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

hyperloglog

v0.1.2

Published

HyperLogLog Distinct Value Estimator

Downloads

8

Readme

HyperLogLog Distinct Value Estimator

HyperLogLog (HLL) is a probabilistic estimator of the cardinality of a stream of values. Given a bounded amount of memory, it can estimate the cardinality of a stream with bounded relative error and it is possible to trade off memory usage for precision. Formally, the standard error for an HLL with n registers is less than 1.04/sqrt(n).

Example

var HyperLogLog = require('hyperloglog');
var hll = HyperLogLog(12);

// Insert three values, two of them distinct.
hll.add(HyperLogLog.hash("value1"));
hll.add(HyperLogLog.hash("value2"));
hll.add(HyperLogLog.hash("value1"));

assert(2 === hll.count());

API

HyperLogLog.hash(string)

In order to count items, they must first be hashed. The hash() function provides a suitable hash. Its output is an array of four 32 bit postive integers, which, taken together constitute the complete hash of the input string. Currently the implementation is MurmurHash3-128.

HyperLogLog(n)

Construct an HLL data structure with n bit indices into the register array. This implies that there will be 2^n registers. Typical values for n are around 12, which would use 4096 registers and yield less than 1.625% relative error. Higher values use more memory, but provide greater precision.

hll.add(hash)

Adds a hash to the HLL. The hash must be in the format emitted by hash(). If

hll.count()

Get the current estimate of the number of distinct values that have been added.

hll.relative_error()

Get the expected relative error, based on the number of registers. This will not change as values are added. The absolute standard error is the relative error multiplied by the estimated cardinality from count().

hll.output()

Return an external representation of the internal HLL state. This may be useful for serializing, storing, and migrating an HLL. The format returned is the same as that accepted by merge().

hll.merge(data)

Merge another HLL's state into this HLL. The data must be of the same form as that returned by output(). If the incoming data has fewer registers than this HLL, this one will be folded down to be the same size as the incoming data, with a corresponding loss of precision. If the incoming data has more registers, it will be folded down as it is merged. The result is that this HLL will be updated as though it had processed all values that were previously processed by either HLL.

hll1.add(hash1);
hll1.add(hash2);

hll2.add(hash2);
hll2.add(hash3);

hll1.merge(hll2.output());

assert(3 === hll1.count());

Possible Improvements

  • Make HLL use a compressed representation from Google's paper
  • Bit shift registers to use 6 bits per register instead of 8 since we only ever actually use 6 for up to 2^64 (2^2^6).
  • Go to 5 bits per register and add the high cardinality correction. Save 16% on storage for effectively the same standard error.