high-performance-pivot
v1.0.8
Published
high-performance-pivot is a dynamic pivot table library for Node.js. This library is designed to generate SQL-based pivot tables from JavaScript arrays of objects.
Downloads
13
Readme
high-performance-pivot
high-performance-pivot is a dynamic pivot table library for Node.js. This library is designed to generate SQL-based pivot tables from JavaScript arrays of objects.
Features
- SQL-based pivot table generation
- Works with in-memory SQLite database
- Supports multiple pivot table configurations
- Dynamic table column definitions
Efficiency
high-performance-pivot
leverages the power of SQL for processing data, which makes it more efficient than traditional JavaScript-only solutions. Unlike other pivot table libraries that use JavaScript's reduce function or loop constructs to process data, high-performance-pivot
uses SQL's built-in aggregation and grouping capabilities for data transformation. This approach ensures higher performance, especially when dealing with large data sets.
Installation
$ npm install high-performance-pivot
Usage/Examples
the initial data should be an array of simple javascript objects, example:
[{
"id": 1,
"month": "2022-01",
"amount": 49486509.42,
"state": "New York",
"contractorName": "Stroman, Johnston and Olson",
"category": "Termite Control",
"subcategory": "Fire Protection",
"amountBudget": 14079681.46,
"amountProjected": 34553480.33,
"categoryId": 1,
"type": "PP",
"subcategoryId": 1
}, {
"id": 2,
"month": "2022-08",
"amount": 42859712.41,
"state": "West Virginia",
"contractorName": "Pollich, Beer and Barrows",
"category": "Ornamental Railings",
"subcategory": "Prefabricated Aluminum Metal Canopies",
"amountBudget": 23466077.24,
"amountProjected": 47644000.07,
"categoryId": 2,
"type": "PP",
"subcategoryId": 2
}, {
"id": 3,
"month": "2022-08",
"amount": 46436462.76,
"state": "Washington",
"contractorName": "Lakin, Crooks and Schaefer",
"category": "Termite Control",
"subcategory": "HVAC",
"amountBudget": 11653024.91,
"amountProjected": 9579976.0,
"categoryId": 3,
"type": "PC",
"subcategoryId": 3
}, {
"id": 4,
"month": "2022-05",
"amount": 15191007.63,
"state": "North Carolina",
"contractorName": "Hudson, Hane and Yost",
"category": "Fire Protection",
"subcategory": "HVAC",
"amountBudget": 24670269.17,
"amountProjected": 26194960.95,
"categoryId": 4,
"type": "PX",
"subcategoryId": 4
}, {
.
.
.
}, {
"id": 89,
"month": "2022-08",
"amount": 43838293.56,
"state": "Michigan",
"contractTitle": "O'Hara, Schinner and Schumm",
"category": "Framing (Wood)",
"subcategory": "Structural & Misc Steel Erection",
"amountBudget": 7541735.38,
"amountProjected": 30644879.95,
"categoryId": 89,
"type": "PP",
"subcategoryId": 89
}]
Example 1:
this configuration get a only one row with sum of key "amount" by each value in the key "month"
import PivotTable, { IPivotConf } from 'high-performance-pivot';
const data = [
// Your data here
];
const pivotConf: IPivotConf = {
pivotColumn: {
caseColumn: 'month',
sumColumn: 'amount',
},
aggregation: ['amount'],
};
const pivotData = await PivotTable.getPivotData(data, pivotConfig);
output:
[{
'2022-01': -4591241.8,
'2022-02': -7236781.8,
'2022-03': -19580180.688,
'2022-04': -104515830.732,
'2022-05': -111858174.00472726,
'2022-06': -176383207.92209452,
'2022-07': -351707894.4675491,
'2022-08': -373034523.45456207,
'2022-08': -436153957.37192935,
.
.
.
"amount": 4134699926.333931
}]
Example 2:
In this example we have defined three different pivot configurations to showcase different aggregations and grouping scenarios.
In the first configuration, we want to create a pivot table with monthly amounts, grouped by category. This will give us an understanding of the total amount spent on different categories on a monthly basis.
The second configuration will further break down the first configuration by subcategory. This allows us to analyze the monthly amount spent on different subcategories of a particular category.
Lastly, the third configuration groups the data by contractor, giving us an understanding of the total amount spent on different contractors on a monthly basis, split by subcategory.
With high-performance-pivot
, we can efficiently perform these three different aggregations in one go using the getPivotDataFromMultipleConfigurations
method:
const configs: IPivotConf[] = [
{
pivotColumn: {
caseColumn: 'month',
sumColumn: 'amount',
},
aggregation: ['amount', 'amountBudget', 'amountProjected'],
groupBy: [
'null AS parentId',
'"categoryId_" || CAST(categoryId as INT) AS id',
'category AS name',
],
},
{
pivotColumn: {
caseColumn: 'month',
sumColumn: 'amount',
},
aggregation: ['amount', 'amountBudget', 'amountProjected'],
groupBy: [
'"categoryId_" || CAST(categoryId as INT) AS parentId',
'"subcategoryId_" || CAST(subcategoryId as INT) AS id',
'subcategory AS name',
],
},
{
pivotColumn: {
caseColumn: 'month',
sumColumn: 'amount',
},
aggregation: ['amount', 'amountBudget', 'amountProjected'],
groupBy: [
'"subcategoryId_" || CAST(subcategoryId as INT) AS parentId',
'"contractId_" || CAST(id as INT) AS id',
'contractorName AS name',
],
},
];
try {
const allData = await PivotTable.getPivotDataFromMultipleConfigurations(
data,
configs,
);
return {
result: allData.flat(),
};
} catch (error) {
throw error;
}
output:
[{
"parentId": null,
"id": "categoryId_508",
"name": "Diseños",
"feb. 2020": 0,
"mar. 2020": 0,
"may. 2020": 0,
"jun. 2020": 0,
"jul. 2020": 0,
"ago. 2020": 3010834,
.
.
.
"amount": 242509486.02,
"amountBudget": 242509486.02,
"amountProjected": 0
}, {
"parentId": "categoryId_525",
"id": "subcategoryId_657",
"name": "Todo Riesgo en Construcción",
"feb. 2020": 0,
"mar. 2020": 0,
"may. 2020": 0,
"jun. 2020": 0,
"jul. 2020": 0,
"ago. 2020": 0,
.
.
.
"amount": 22586081,
"amountBudget": 22586081,
"amountProjected": 0
}, {
.
.
.
}, {
"parentId": "subcategoryId_923",
"id": "contractId_190",
"name": "VENTASDÉ",
"feb. 2020": 0,
"mar. 2020": 0,
"may. 2020": 0,
"jun. 2020": 3810734,
"jul. 2020": 0,
"ago. 2020": 4666462,
"sep. 2020": 2481545,
"oct. 2020": 2481545,
"nov. 2020": 2481545,
.
.
.
"amount": 25059415,
"amountInvoiced": 25059415,
"amountProjected": 0
}]
Example 3:
this example shows how you can agrupate values by custom identifier and shows them as a columns
const pivotConf: IPivotConf = {
pivotColumn: {
caseColumn: 'type',
sumColumn: 'amountBudget',
values: {
quota: ['PC', 'PP'],
extra: ['PX'],
},
},
aggregation: ['amount', 'amountProjected', 'amountBudget'],
groupBy: ['month', 'state'],
sortBy: ['origDate'],
};
const pivotData = await PivotTable.getPivotData(data, pivotConfig);
output:
[
{
month: 'mar. 2022',
state: 'INVOICED',
quota: 0,
extra: 3243438,
amount: 3243438,
amountInvoiced: 3243438,
amountProjected: 0,
amountBudget: 3243438,
},
{
month: 'abr. 2022',
state: 'INVOICED',
quota: 0,
extra: 0,
amount: 0,
amountInvoiced: 0,
amountProjected: 0,
amountBudget: 0,
},
{
month: 'may. 2022',
state: 'INVOICED',
quota: 0,
extra: 0,
amount: 0,
amountInvoiced: 0,
amountProjected: 0,
amountBudget: 0,
},
{
month: 'jun. 2022',
state: 'INVOICED',
quota: 0,
extra: 0,
amount: 0,
amountInvoiced: 0,
amountProjected: 0,
amountBudget: 0,
},
{
month: 'jul. 2022',
state: 'INVOICED',
quota: 0,
extra: 0,
amount: 1995961.8461538465,
amountInvoiced: 1995961.8461538465,
amountProjected: 0,
amountBudget: 0,
},
];
Documentation
Visit this GitHub repository
for more detailed documentation and usage examples. This repository also includes a NestJS application that tests this library.
Notes
- This library is intended for server-side (backend) usage.
- Although this library uses an in-memory SQLite database for processing, it doesn't handle database connections to your main database.
Author
This library is developed and maintained by Fabian Siatama. Feel free to reach out on GitHub
for any questions, suggestions, or if you want to contribute to the project.
Contributing
If you'd like to contribute, please fork the repository and make changes as you'd like. Pull requests are warmly welcome.
License
This project is licensed under the MIT License