npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

heap-typed

v1.53.6

Published

Heap. Javascript & Typescript Data Structure.

Downloads

2,791

Readme

NPM GitHub top language npm eslint npm bundle size npm bundle size npm

What

Brief

This is a standalone Heap data structure from the data-structure-typed collection. If you wish to access more data structures or advanced features, you can transition to directly installing the complete data-structure-typed package

How

install

npm

npm i heap-typed --save

yarn

yarn add heap-typed

snippet

Use Heap to sort an array

function heapSort(arr: number[]): number[] {
      const heap = new Heap<number>(arr, { comparator: (a, b) => a - b });
      const sorted: number[] = [];
      while (!heap.isEmpty()) {
        sorted.push(heap.poll()!); // Poll minimum element
      }
      return sorted;
    }

    const array = [5, 3, 8, 4, 1, 2];
    console.log(heapSort(array)); // [1, 2, 3, 4, 5, 8]

Use Heap to solve top k problems

function topKElements(arr: number[], k: number): number[] {
      const heap = new Heap<number>([], { comparator: (a, b) => b - a }); // Max heap
      arr.forEach(num => {
        heap.add(num);
        if (heap.size > k) heap.poll(); // Keep the heap size at K
      });
      return heap.toArray();
    }

    const numbers = [10, 30, 20, 5, 15, 25];
    console.log(topKElements(numbers, 3)); // [15, 10, 5]

Use Heap to merge sorted sequences

function mergeSortedSequences(sequences: number[][]): number[] {
      const heap = new Heap<{ value: number; seqIndex: number; itemIndex: number }>([], {
        comparator: (a, b) => a.value - b.value // Min heap
      });

      // Initialize heap
      sequences.forEach((seq, seqIndex) => {
        if (seq.length) {
          heap.add({ value: seq[0], seqIndex, itemIndex: 0 });
        }
      });

      const merged: number[] = [];
      while (!heap.isEmpty()) {
        const { value, seqIndex, itemIndex } = heap.poll()!;
        merged.push(value);

        if (itemIndex + 1 < sequences[seqIndex].length) {
          heap.add({
            value: sequences[seqIndex][itemIndex + 1],
            seqIndex,
            itemIndex: itemIndex + 1
          });
        }
      }

      return merged;
    }

    const sequences = [
      [1, 4, 7],
      [2, 5, 8],
      [3, 6, 9]
    ];
    console.log(mergeSortedSequences(sequences)); // [1, 2, 3, 4, 5, 6, 7, 8, 9]

Use Heap to dynamically maintain the median

class MedianFinder {
      private low: MaxHeap<number>; // Max heap, stores the smaller half
      private high: MinHeap<number>; // Min heap, stores the larger half

      constructor() {
        this.low = new MaxHeap<number>([]);
        this.high = new MinHeap<number>([]);
      }

      addNum(num: number): void {
        if (this.low.isEmpty() || num <= this.low.peek()!) this.low.add(num);
        else this.high.add(num);

        // Balance heaps
        if (this.low.size > this.high.size + 1) this.high.add(this.low.poll()!);
        else if (this.high.size > this.low.size) this.low.add(this.high.poll()!);
      }

      findMedian(): number {
        if (this.low.size === this.high.size) return (this.low.peek()! + this.high.peek()!) / 2;
        return this.low.peek()!;
      }
    }

    const medianFinder = new MedianFinder();
    medianFinder.addNum(10);
    console.log(medianFinder.findMedian()); // 10
    medianFinder.addNum(20);
    console.log(medianFinder.findMedian()); // 15
    medianFinder.addNum(30);
    console.log(medianFinder.findMedian()); // 20
    medianFinder.addNum(40);
    console.log(medianFinder.findMedian()); // 25
    medianFinder.addNum(50);
    console.log(medianFinder.findMedian()); // 30

Use Heap for load balancing

function loadBalance(requests: number[], servers: number): number[] {
      const serverHeap = new Heap<{ id: number; load: number }>([], { comparator: (a, b) => a.load - b.load }); // min heap
      const serverLoads = new Array(servers).fill(0);

      for (let i = 0; i < servers; i++) {
        serverHeap.add({ id: i, load: 0 });
      }

      requests.forEach(req => {
        const server = serverHeap.poll()!;
        serverLoads[server.id] += req;
        server.load += req;
        serverHeap.add(server); // The server after updating the load is re-entered into the heap
      });

      return serverLoads;
    }

    const requests = [5, 2, 8, 3, 7];
    console.log(loadBalance(requests, 3)); // [12, 8, 5]

Use Heap to schedule tasks

type Task = [string, number];

    function scheduleTasks(tasks: Task[], machines: number): Map<number, Task[]> {
      const machineHeap = new Heap<{ id: number; load: number }>([], { comparator: (a, b) => a.load - b.load }); // Min heap
      const allocation = new Map<number, Task[]>();

      // Initialize the load on each machine
      for (let i = 0; i < machines; i++) {
        machineHeap.add({ id: i, load: 0 });
        allocation.set(i, []);
      }

      // Assign tasks
      tasks.forEach(([task, load]) => {
        const machine = machineHeap.poll()!;
        allocation.get(machine.id)!.push([task, load]);
        machine.load += load;
        machineHeap.add(machine); // The machine after updating the load is re-entered into the heap
      });

      return allocation;
    }

    const tasks: Task[] = [
      ['Task1', 3],
      ['Task2', 1],
      ['Task3', 2],
      ['Task4', 5],
      ['Task5', 4]
    ];
    const expectedMap = new Map<number, Task[]>();
    expectedMap.set(0, [
      ['Task1', 3],
      ['Task4', 5]
    ]);
    expectedMap.set(1, [
      ['Task2', 1],
      ['Task3', 2],
      ['Task5', 4]
    ]);
    console.log(scheduleTasks(tasks, 2)); // expectedMap

API docs & Examples

API Docs

Live Examples

Examples Repository

Data Structures

Standard library data structure comparison

Benchmark

Built-in classic algorithms

Software Engineering Design Standards