gmp-wasm
v1.3.2
Published
Arbitrary-precision Integer, Rational and Float types based on the GMP and MPFR libraries
Downloads
281
Maintainers
Readme
GMP-WASM
Arbitrary-precision Integer, Rational and Float types based on the GMP and MPFR libraries.
Features
- Supports all modern browsers, web workers, Node.js and Deno
- Includes an easy-to-use, high-level wrapper, but low-level functions are also exposed
- Has a lot more features, and in some cases, it's faster than the built-in BigInt type
- The WASM binary is bundled as a compressed base64 string (no problems with linking)
- Works even without Webpack or other bundlers
- Includes TypeScript type definitions, check API here.
- Zero dependencies
- Full minified and gzipped bundle has a size of
- It also packages a mini bundle without Float/MPFR operations
- 100% open source & transparent build process
Installation
npm i gmp-wasm
It can also be used directly from HTML (via jsDelivr):
<!-- loads the full, minified library into the global `gmp` variable -->
<script src="https://cdn.jsdelivr.net/npm/gmp-wasm"></script>
<!-- or loads the non-minified library -->
<script src="https://cdn.jsdelivr.net/npm/gmp-wasm/dist/index.umd.js"></script>
<!-- or loads the minified library without Float/MPFR functions -->
<script src="https://cdn.jsdelivr.net/npm/gmp-wasm/dist/mini.umd.min.js"></script>
Usage
gmp-wasm also provides a high-level wrapper over the GMP functions. There are three major components:
g.Integer()
- Wraps integers (MPZ)g.Rational()
- Wraps rational numbers (MPQ)g.Float()
- Wraps floating-point numbers (MPFR)
const gmp = require('gmp-wasm');
gmp.init().then(({ calculate }) => {
// calculate() automatically deallocates all objects created within the callback function
const result = calculate((g) => {
const six = g.Float(1).add(5);
return g.Pi().div(six).sin(); // sin(Pi/6) = 0.5
});
console.log(result);
});
It is also possible to delay deallocation through the getContext()
API:
const gmp = require('gmp-wasm');
gmp.init().then(({ getContext }) => {
const ctx = getContext();
let x = ctx.Integer(1);
for (let i = 2; i < 16; i++) {
x = x.add(i);
}
console.log(x.toString());
setTimeout(() => ctx.destroy(), 50);
});
The precision and the rounding modes can be set by passing a parameter to the context or to the Float constructor.
const roundingMode = gmp.FloatRoundingMode.ROUND_DOWN;
const options = { precisionBits: 10, roundingMode };
const result = calculate(g => g.Float(1).div(3), options);
// or
const result2 = calculate(g => g.Float(1, options).div(3));
// or
const ctx = getContext(options);
const result3 = ctx.Float(1).div(3).toString();
Predefined constants
- Pi
- EulerConstant
- EulerNumber
- Log2
- Catalan
Advanced usage
High-level wrapper can be combined with low-level functions:
const sum = calculate((g) => {
const a = g.Float(1);
const b = g.Float(2);
const c = g.Float(0);
// c = a + b
binding.mpfr_add(c.mpfr_t, a.mpfr_t, b.mpfr_t, 0);
return c;
});
If you want more control and performance you can use the original GMP / MPFR functions even without high-level wrappers.
const gmp = require('gmp-wasm');
gmp.init().then(({ binding }) => {
// Create first number and initialize it to 30
const num1Ptr = binding.mpz_t();
binding.mpz_init_set_si(num1Ptr, 30);
// Create second number from string. The string needs to be copied into WASM memory
const num2Ptr = binding.mpz_t();
const strPtr = binding.malloc_cstr('40');
binding.mpz_init_set_str(num2Ptr, strPtr, 10);
// Calculate num1Ptr + num2Ptr, store the result in num1Ptr
binding.mpz_add(num1Ptr, num1Ptr, num2Ptr);
// Get result as integer
console.log(binding.mpz_get_si(num1Ptr));
// Deallocate memory
binding.free(strPtr);
binding.mpz_clears(num1Ptr, num2Ptr);
binding.mpz_t_frees(num1Ptr, num2Ptr);
});
Sometimes, it's easier and faster to deallocate everything by reinitializing the WASM bindings:
// Deallocate all memory objects created by gmp-wasm
await binding.reset();
Performance
In some cases, this library can provide better performance than the built-in BigInt type.
For example, calculating 8000 digits of Pi using the following formula provides better results:
PI = 3
+ 3 * (1/2) * (1/3) * (1/4)
+ 3 * ((1 * 3)/(2 * 4)) * (1/5) * (1 / (4^2))
+ 3 * ((1 * 3 * 5) / (2 * 4 * 6)) * (1/7) * (1 / (4^3))
+ ...
| Test | Avg. time | Speedup |
| ----------------------------------------------------------------------------------- | --------- | -------- |
| With JS built-in BigInt
type | 129 ms | 1x |
| gmp-wasm Integer()
high-level wrapper | 88 ms | 1.47x |
| Same as previous with delayed memory deallocation | 78 ms | 1.65x |
| gmp-wasm MPZ
low-level functions | 53 ms | 2.43x |
| decimal.js 10.3.1 with integer division | 443 ms | 0.29x |
| big-integer 1.6.51 | 129 ms | 1x |
| ---------------------------- | -------- | -------- |
| gmp-wasm Float()
high-level wrapper | 175 ms | 0.74x |
| Same as previous with delayed memory deallocation | 169 ms | 0.76x |
| gmp-wasm MPFR
low-level functions | 118 ms | 1.09x |
| decimal.js 10.3.1 with float division | 785 ms | 0.16x |
| ---------------------------- | -------- | -------- |
| gmp-wasm Float(1).atan().mul(4)
| 0.6 ms | 215x |
| gmp-wasm Float('0.5').asin().mul(6)
| 17 ms | 7.59x |
* These measurements were made with Node.js v16.14
on an Intel Kaby Lake desktop CPU. Source code is here.