npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

gltfjsx-webp

v1.0.7

Published

GLTF to JSX converter with WebP compression for textures

Downloads

6

Readme

Fork Update

A fork of gltfjsx with support for WebP compression for textures and a small fix to the parser to fix for nested meshes when using --instancesall flag.

It was necessary to convert the cli tool to ESM as it was the only way to use the WebP compression library (libSquoosh), which is used internally by gLTF-Transform. Check out more info on the webp function here.

WebP compression for textures can reduce the size of the GLTF/GLB file to 70%-90%, so try it out with your assets!

Original README from gltfjsx

A small command-line tool that turns GLTF assets into declarative and re-usable react-three-fiber JSX components.

Why? Because the GLTF workflow on the web is not ideal ...

  • GLTF is thrown wholesale into the scene which prevents re-use, in threejs objects can only be mounted once
  • Contents can only be found by traversal which is cumbersome and slow
  • Changes to queried nodes are made by mutation, which alters the source data and prevents re-use
  • Re-structuring content, making nodes conditional or adding/removing thems is cumbersome

Gltfjsx creates a virtual, nested graph of all the objects and materials inside your asset. It will not touch or modify your files in any way. Now you can easily make the data dynamic, alter contents, add events, or re-use the asset without having to re-parse and clone, as it is usually done.

Usage

Usage
  $ npx gltfjsx-webp model.gltf [options]

Options
  --types, -t         Add Typescript definitions
  --keepnames, -k     Keep original names
  --keepgroups, -K    Keep (empty) groups
  --meta, -m          Include metadata (as userData)
  --shadows, s        Let meshes cast and receive shadows
  --printwidth, w     Prettier printWidth (default: 120)
  --precision, -p     Number of fractional digits (default: 2)
  --draco, -d         Draco binary path
  --root, -r          Sets directory from which .gltf file is served
  --instance, -i      Instance re-occuring geometry
  --instanceall, -I   Instance every geometry (for cheaper re-use)
  --transform, -T     Transform the asset for the web (draco, prune, resize)
  --aggressive, -a    Aggressively prune the graph (empty groups, transform overlap)
  --debug, -D         Debug output

A typical use-case

First you run your model through gltfjsx. npx allows you to use npm packages without installing them.

npx gltfjsx-webp model.gltf

It creates a javascript file that plots out all of the assets contents. The original gltf must still be be in your /public folder of course.

/*
auto-generated by: https://github.com/pmdrs/gltfjsx
author: abcdef (https://sketchfab.com/abcdef)
license: CC-BY-4.0 (http://creativecommons.org/licenses/by/4.0/)
source: https://sketchfab.com/models/...
title: Model
*/

import { useGLTF, PerspectiveCamera } from '@react-three/drei'

export function Model(props) {
  const { nodes, materials } = useGLTF('/model.gltf')
  return (
    <group {...props} dispose={null}>
      <group name="camera" position={[10, 0, 50]} rotation={[Math.PI / 2, 0, 0]}>
        <PerspectiveCamera fov={40} near={10} far={1000} />
      </group>
      <group name="sun" position={[100, 50, 100]} rotation={[-Math.PI / 2, 0, 0]}>
        <pointLight intensity={10} />
      </group>
      <mesh geometry={nodes.robot.geometry} material={materials.metal} />
      <mesh geometry={nodes.rocket.geometry} material={materials.wood} />
    </group>
  )
}

useGLTF.preload('/model.gltf')

This component can now be dropped into your scene. It is asynchronous and therefore must be wrapped into <Suspense> which gives you full control over intermediary loading-fallbacks and error handling.

import { Canvas } from '@react-three/fiber'
import { Suspense } from 'react'
import Model from './Model'

function App() {
  return (
    <Canvas>
      <Suspense fallback={null}>
        <Model />
      </Suspense>

Now you could re-use it:

<Model position={[0, 0, 0]} />
<Model position={[10, 0, -10]} />

Or make the model dynamic. Change its colors for example:

<mesh geometry={nodes.robot.geometry} material={materials.metal} material-color="green" />

Or exchange materials:

<mesh geometry={nodes.robot.geometry}>
  <meshPhysicalMaterial color="hotpink" />
</mesh>

Make contents conditional:

{
  condition && <mesh geometry={nodes.robot.geometry} material={materials.metal} />
}

Add events:

<mesh geometry={nodes.robot.geometry} material={materials.metal} onClick={handleClick} />

Features

⚡️ Draco and meshopt compression ootb

You don't need to do anything if your models are draco compressed, since useGLTF defaults to a draco CDN. By adding the --draco flag you can refer to local binaries which must reside in your /public folder.

⚡️ Easier access to animations

If your GLTF contains animations it will add drei's useAnimations hook, which extracts all clips and prepares them as actions:

const { nodes, materials, animations } = useGLTF('/model.gltf')
const { actions } = useAnimations(animations, group)

If you want to play an animation you can do so at any time:

<mesh onClick={(e) => actions.jump.play()} />

If you want to blend animations:

const [name, setName] = useState("jump")
...
useEffect(() => {
  actions[name].reset().fadeIn(0.5).play()
  return () => actions[name].fadeOut(0.5)
}, [name])

⚡️ Preload your assets for faster response

The asset will be preloaded by default, this makes it quicker to load and reduces time-to-paint. Remove the preloader if you don't need it.

useGLTF.preload('/model.gltf')

⚡️ Type-safety

Add the --types flag and your GLTF will be typesafe.

type GLTFResult = GLTF & {
  nodes: { robot: THREE.Mesh; rocket: THREE.Mesh }
  materials: { metal: THREE.MeshStandardMaterial; wood: THREE.MeshStandardMaterial }
}

export default function Model(props: JSX.IntrinsicElements['group']) {
  const { nodes, materials } = useGLTF<GLTFResult>('/model.gltf')

⚡️ Auto-transform (compression, resize)

With the --transform flag it creates a binary-packed, draco-compressed, texture-resized (1024x1024), deduped and pruned GLTF ready to be consumed on a web site. It uses glTF-Transform. It will not alter the original but create a copy and append [modelname]-transformed.glb.

JSX compression is enabled with the --aggressive flag, this will start to cut down on empty or unneccessary groups.

⚡️ Auto-instancing

Use the --instance flag and it will look for similar geometry and create instances of them. Look into drei/Merged to understand how it works. It does not matter if you instanced the model previously in Blender, it creates instances for each mesh that has a specific geometry and/or material.

--instanceall will create instances of all the geometry. This allows you to re-use the model with the smallest amount of drawcalls.

Your export will look like something like this:

const context = createContext()
export function Instances({ children, ...props }) {
  const { nodes } = useGLTF('/model-transformed.glb')
  const instances = useMemo(() => ({ Screw1: nodes['Screw1'], Screw2: nodes['Screw2'] }), [nodes])
  return (
    <Merged meshes={instances} {...props}>
      {(instances) => <context.Provider value={instances} children={children} />}
    </Merged>
  )
}

export function Model(props) {
  const instances = useContext(context)
  return (
    <group {...props} dispose={null}>
      <instances.Screw1 position={[-0.42, 0.04, -0.08]} rotation={[-Math.PI / 2, 0, 0]} />
      <instances.Screw2 position={[-0.42, 0.04, -0.08]} rotation={[-Math.PI / 2, 0, 0]} />
    </group>
  )
}

Note that similar to --transform it also has to transform the model. In order to use and re-use the model import both Instances and Model. Put all your models into the Instances component (you can nest).

The following will show the model three times, but you will only have 2 drawcalls tops.

import { Instances, Model } from './Model'

<Instances>
  <Model position={[10,0,0]}>
  <Model position={[-10,0,0]}>
  <Model position={[-10,10,0]}>
</Instance>

Using the parser stand-alone

import { parse } from '@react-three/gltfjsx'
import { GLTFLoader, DRACOLoader } from 'three-stdlib'

const gltfLoader = new GLTFLoader()
const dracoloader = new DRACOLoader()
dracoloader.setDecoderPath('https://www.gstatic.com/draco/v1/decoders/')
gltfLoader.setDRACOLoader(dracoloader)

gltfLoader.load(url, (gltf) => {
  const jsx = parse(filename, gltf, config)
})

Using GLTFStructureLoader stand-alone

The GLTFStructureLoader can come in handy while testing gltf assets. It allows you to extract the structure without the actual binaries and textures making it possible to run in a testing environment.

import { GLTFStructureLoader } from '@react-three/gltfjsx'
import fs from 'fs/promises'

it('should have a scene with a blue mesh', async () => {
  const data = await fs.readFile('./model.glb')
  const { scene } = await new Promise((res) => loader.parse(data, '', res))
  expect(() => scene.children.length).toEqual(1)
  expect(() => scene.children[0].type).toEqual('mesh')
  expect(() => scene.children[0].material.color).toEqual('blue')
})

Requirements