npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

geowarp

v1.26.2

Published

Super Low-Level Raster Reprojection and Resampling Library

Downloads

699

Readme

geowarp

Super Low-Level Raster Reprojection and Resampling Library

install

npm install -S geowarp

usage

const geowarp = require("geowarp");
const proj4 = require("proj4-fully-loaded");

const result = geowarp({
  // control the level of console log output
  // set debug_level to zero to turn off console logging
  debug_level: 2,

  // reproject from an [x, y] point in the input spatial reference system
  // to an [x, y] point in the output spatial reference system
  forward: proj4("EPSG:" + in_srs, "EPSG:3857").forward,

  // reproject from an [x, y] point in the output spatial reference system
  // to an [x, y] point in the input spatial reference system
  inverse: proj4("EPSG:" + in_srs, "EPSG:3857").inverse,

  // two-dimensional array of pixel data organized by band
  // usually [ r, g, b ] or [ r, g, b, a ]
  // pixel data for each band is usually flattened,
  // so the end of one row is immediately followed by the next row
  in_data: [
    [0, 123, 123, 162, ...],
    [213, 41, 62, 124, ...],
    [84, 52, 124, 235, ...]
  ],

  // bounding box of input data (in_data)
  // in [xmin, ymin, xmax, ymax] format
  in_bbox: [ -122.51, 40.97, -122.34, 41.11 ],

  // layout of the in_data using xdim layout syntax
  // see: https://github.com/danieljdufour/xdim
  in_layout: "[band][row,column]",

  // a number or array of numbers
  in_no_data: -99,

  // a number or string representing the spatial reference system of the input data
  // could be 4326 or "EPSG:4326"
  in_srs: 4326,

  // only necessary when in_data is skewed or rotated
  // 6-parameter geotransform using the order from https://gdal.org/tutorials/geotransforms_tut.html
  in_geotransform: [337934.48363, -0.142999, -0.576775, 7840518.4648, -0.57677, 0.14299],

  // how many pixels wide the input data is
  in_width: 1032,

  // how many pixels tall the input data is
  in_height: 1015,

  // optional array of constructor names for each array level
  // default is to use Array (untyped) for everything
  out_array_types: ["Array", "Array", "Uint8Array"],

  // optional array for sampling and/or changing band order
  // array is the order of the bands in the output with numbers
  // indicating the band index in the input (starting at zero)
  // for example, [13, 12, 11] skips the first 11 bands,
  // and takes the 12th, 13th, and 14th in reverse order
  out_bands: [13, 12, 11],

  // bounding box of output
  // this is the space that you want to paint
  // in same format as in_bbox
  out_bbox: [-13638811.83098057, 5028944.964938315, -13619243.951739563, 5028944.964938315],

  // optional
  // single or multi-dimensional array that will hold the output
  out_data: [[[[],[],[],...],[[],[],[],...],[[],[],[],...],[[],[],[],...],...]],

  // optional, default is null
  // the no data value for your output data
  out_no_data: -99,

  // layout of the result using xdim layout syntax
  // see: https://github.com/danieljdufour/xdim
  out_layout: "[row][column][band]",

  // a number or string representing the spatial reference system of the input data
  // could be 4326 or "EPSG:4326"
  out_srs: 3857,

  // optional
  // number of bands in the output
  out_pixel_depth: 3,

  // height of the output image in pixels
  out_height: 256,

  // width of the output image in pixels
  out_width: 256,

  // horizontal and vertical resolution
  // resolution of [0.25, 0.25] (i.e. 25%) means that you sample once for every 4 x 4 pixels
  // this is useful if you need your output to be a certain height or width (like 256 x 256)
  // but don't necessarily want to render data at that high resolution
  out_resolution: [0.5, 0.5],

  // method for sampling pixels
  // current supported methods are:
  // "near", "vectorize", "near-vectorize", "bilinear", "max", "mean", "median", "min", "mode", "mode-max", "mode-mean", "mode-median", and "mode-min"
  // you can also pass in a custom function that takes in ({ values }) and returns a number
  method: 'median',

  // round output pixel values to closest integer
  // do this if you will convert your output to a PNG or JPG
  round: true,

  // optional
  // the lowest possible pixel value considering the bit-depth of the data
  // this is used to speed up the min and mode-min resampling
  // if in_data is an array of typed arrays, this will be automatically calculated 
  theoretical_min: 0,

  // optional
  // the highest possible pixel value considering the bit-depth of the data
  // this is used to speed up the max and mode-max resampling
  // if in_data is an array of typed arrays, this will be automatically calculated 
  theoretical_max: 255,

  // optional
  // band math expression that maps a pixel from the read bands to the output
  // if expr is async (i.e. returns a promise), geowarp will return a promise
  expr: ({ pixel }) => {
    // clamp values above 100
    return pixel.map(value => Math.min(value, 100));
  },

  // optional
  // whether to insert or skip null values
  // "skip" - default, don't insert null values
  // "insert" - try to insert null values into output data
  insert_null_strategy: "skip",

  // optional
  // array of band indexes to read from
  // use this if your expr function only uses select bands
  read_bands: [0, 1, 2],
  
  // optional
  // polygon or multi-polygons defining areas to cut out (everything outside becomes no data)
  // terminology taken from https://gdal.org/programs/gdalwarp.html
  cutline: geojson,
  
  // if you specify a cutline, this is required
  cutline_srs: 4326,
  
  // function to reproject [x, y] point from cutline_srs to out_srs
  // required if you specify a cutline and the cutline is a different srs than out_srs,
  cutline_forward: proj4("EPSG:4326", "EPSG:3857").forward,

  // optional, default is "outside"
  // cut out the pixels "inside" or "outside" the cutline
  // in other words, if your cutline_strategy is "inside",
  // geowarp will set every pixel inside your cutline geometry to out_no_data
  cutline_strategy: "inside",

  // optional, default is false
  // enable experimental turbocharging via proj-turbo
  turbo: true,

  // completely optional and not recommended
  // you don't want this in most cases
  // over-ride the default function for inserting data into the output multidimensional array
  // useful if writing to an alternative object like a canvas
  insert_pixel: ({ row, column, pixel }) => {
    context.fillStyle = toColor(pixel);
    context.fillRect(column, row, 1, 1);
  },

  // completely optional and not recommended in most cases
  // take pixel values for a given sample located by sample row and column
  // and insert into the output multidimensional array
  // by default, this will call insert_pixel
  insert_sample: ({ row, column, pixel }) => {
    const [xmin, ymin, xmax, ymax] = scalePixel([column, row], [x_scale, y_scale]);
    for (let y = ymin; y < ymax; y++) {
      for (let x = xmin; x < xmax; x++) {
        insert_pixel({ row: y, column: x, pixel });
      }
    }
  },

  // skip writing a pixel if "any" or "all" its values are no data
  // default is undefined, meaning don't skip no data values
  skip_no_data_strategy: "any"
});

result is

{
  // a multi-dimensional array of pixel values with the structure defined by out_layout
  data: [
    [ [...], [...], [...] ], // band 1
    // ...
  ]
}