npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

geolibreturnlatlng

v2.0.1

Published

Ajustes no Lat Lng

Downloads

7

Readme

Geolib

CircleCI styled with prettier

Library to provide basic geospatial operations like distance calculation, conversion of decimal coordinates to sexagesimal and vice versa, etc. This library is currently 2D, meaning that altitude/elevation is not yet supported by any of its functions!

Changelog

A detailed changelog can be found in CHANGELOG.md

Install

npm install geolib
yarn add geolib

Usage

There is a UMD build and an ES Module build. You can either use the UMD build in Node like any other library:

const geolib = require('geolib');

or in the browser by using a simple script element:

<script src="lib/geolib.js"></script>

If you load it in the browser, you can access all the functions via window.geolib.

If you're working with a bundler (like Webpack or Parcel) or have an environment that supports ES Modules natively, you can either import certain functions from the package directly:

import { getDistance } from 'geolib';

or load the whole library:

import * as geolib from 'geolib';

or you can import single functions directly to potentially make use of treeshaking (recommended):

import getDistance from 'geolib/es/getDistance';

General

This library is written in TypeScript. You don't have to know TypeScript to use Geolib but the type definitions give you valuable information about the general usage, input parameters etc.

Supported values and formats

All methods that are working with coordinates accept either an object with a lat/latitude and a lon/lng/longitude property, or a GeoJSON coordinates array, like: [lon, lat]. All values can be either in decimal (53.471) or sexagesimal (53° 21' 16") format.

Distance values are always floats and represent the distance in meters.

Functions

getDistance(start, end, accuracy = 1)

Calculates the distance between two geo coordinates.

This function takes up to 3 arguments. First 2 arguments must be valid GeolibInputCoordinates (e.g. {latitude: 52.518611, longitude: 13.408056}). Coordinates can be in sexagesimal or decimal format. The third argument is accuracy (in meters). By default the accuracy is 1 meter. If you need a more accurate result, you can set it to a lower value, e.g. to 0.01 for centimeter accuracy. You can set it higher to have the result rounded to the next value that is divisible by your chosen accuracy (e.g. 25428 with an accuracy of 100 becomes 25400).

getDistance(
    { latitude: 51.5103, longitude: 7.49347 },
    { latitude: "51° 31' N", longitude: "7° 28' E" }
);
// Working with W3C Geolocation API
navigator.geolocation.getCurrentPosition(
    function(position) {
        console.log(
            'You are ',
            geolib.getDistance(position.coords, {
                latitude: 51.525,
                longitude: 7.4575,
            }),
            'meters away from 51.525, 7.4575'
        );
    },
    () => {
        alert('Position could not be determined.');
    }
);

Returns the distance in meters as a numeric value.

getPreciseDistance(start, end[, int accuracy])

Calculates the distance between two geo coordinates. This method is more accurate then getDistance, especially for long distances but it is also slower. It is using the Vincenty inverse formula for ellipsoids.

It takes the same (up to 3) arguments as getDistance.

geolib.getPreciseDistance(
    { latitude: 51.5103, longitude: 7.49347 },
    { latitude: "51° 31' N", longitude: "7° 28' E" }
);

getCenter(coords)

Calculates the geographical center of all points in a collection of geo coordinates. Takes an array of coordinates and calculates the center of it.

geolib.getCenter([
    { latitude: 52.516272, longitude: 13.377722 },
    { latitude: 51.515, longitude: 7.453619 },
    { latitude: 51.503333, longitude: -0.119722 },
]);

Returns an object:

{
    "latitude": centerLat,
    "longitude": centerLon
}

getCenterOfBounds(coords)

Calculates the center of the bounds of geo coordinates.

Takes an array of coordinates, calculate the border of those, and gives back the center of that rectangle.

On polygons like political borders (eg. states), this may gives a closer result to human expectation, than getCenter, because that function can be disturbed by uneven distribution of point in different sides.

Imagine the US state Oklahoma: getCenter on that gives a southern point, because the southern border contains a lot more nodes, than the others.

geolib.getCenterOfBounds([
    { latitude: 51.513357512, longitude: 7.45574331 },
    { latitude: 51.515400598, longitude: 7.45518541 },
    { latitude: 51.516241842, longitude: 7.456494328 },
    { latitude: 51.516722545, longitude: 7.459863183 },
    { latitude: 51.517443592, longitude: 7.463232037 },
]);

Returns an object:

{
    "latitude": centerLat,
    "longitude": centerLng
}

getBounds(points)

Calculates the bounds of geo coordinates.

geolib.getBounds([
    { latitude: 52.516272, longitude: 13.377722 },
    { latitude: 51.515, longitude: 7.453619 },
    { latitude: 51.503333, longitude: -0.119722 },
]);

It returns minimum and maximum latitude and minimum and maximum longitude as an object:

{
    "minLat": minimumLatitude,
    "maxLat": maximumLatitude,
    "minLng": minimumLongitude,
    "maxLng": maximumLongitude,
}

isPointInPolygon(point, polygon)

Checks whether a point is inside of a polygon or not.

geolib.isPointInPolygon({ latitude: 51.5125, longitude: 7.485 }, [
    { latitude: 51.5, longitude: 7.4 },
    { latitude: 51.555, longitude: 7.4 },
    { latitude: 51.555, longitude: 7.625 },
    { latitude: 51.5125, longitude: 7.625 },
]);

Returns true or false

isPointWithinRadius(point, centerPoint, radius)

Checks whether a point is inside of a circle or not.

// checks if 51.525/7.4575 is within a radius of 5 km from 51.5175/7.4678
geolib.isPointWithinRadius(
    { latitude: 51.525, longitude: 7.4575 },
    { latitude: 51.5175, longitude: 7.4678 },
    5000
);

Returns true or false

getRhumbLineBearing(origin, destination)

Gets rhumb line bearing of two points. Find out about the difference between rhumb line and great circle bearing on Wikipedia. Rhumb line should be fine in most cases:

http://en.wikipedia.org/wiki/Rhumb_line#General_and_mathematical_description

Function is heavily based on Doug Vanderweide's great PHP version (licensed under GPL 3.0) http://www.dougv.com/2009/07/13/calculating-the-bearing-and-compass-rose-direction-between-two-latitude-longitude-coordinates-in-php/

geolib.getRhumbLineBearing(
    { latitude: 52.518611, longitude: 13.408056 },
    { latitude: 51.519475, longitude: 7.46694444 }
);

Returns calculated bearing as number.

getGreatCircleBearing(origin, destination)

Gets great circle bearing of two points. This is more accurate than rhumb line bearing but also slower.

geolib.getGreatCircleBearing(
    { latitude: 52.518611, longitude: 13.408056 },
    { latitude: 51.519475, longitude: 7.46694444 }
);

Returns calculated bearing as number.

getCompassDirection(origin, destination, bearingFunction = getRhumbLineBearing)

Gets the compass direction from an origin coordinate to a destination coordinate. Optionally a function to determine the bearing can be passed as third parameter. Default is getRhumbLineBearing.

geolib.getCompassDirection(
    { latitude: 52.518611, longitude: 13.408056 },
    { latitude: 51.519475, longitude: 7.46694444 }
);

Returns the direction (e.g. NNE, SW, E, …) as string.

orderByDistance(point, arrayOfPoints)

Sorts an array of coords by distance to a reference coordinate.

geolib.orderByDistance({ latitude: 51.515, longitude: 7.453619 }, [
    { latitude: 52.516272, longitude: 13.377722 },
    { latitude: 51.518, longitude: 7.45425 },
    { latitude: 51.503333, longitude: -0.119722 },
]);

Returns an array of points ordered by their distance to the reference point.

findNearest(point, arrayOfPoints)

Finds the single one nearest point to a reference coordinate. It's actually just a convenience method that uses orderByDistance under the hood and returns the first result.

geolib.findNearest({ latitude: 52.456221, longitude: 12.63128 }, [
    { latitude: 52.516272, longitude: 13.377722 },
    { latitude: 51.515, longitude: 7.453619 },
    { latitude: 51.503333, longitude: -0.119722 },
    { latitude: 55.751667, longitude: 37.617778 },
    { latitude: 48.8583, longitude: 2.2945 },
    { latitude: 59.3275, longitude: 18.0675 },
    { latitude: 59.916911, longitude: 10.727567 },
]);

Returns the point nearest to the reference point.

getPathLength(points, distanceFunction = getDistance)

Calculates the length of a collection of coordinates. Expects an array of points as first argument and optionally a function to determine the distance as second argument. Default is getDistance.

geolib.getPathLength([
    { latitude: 52.516272, longitude: 13.377722 },
    { latitude: 51.515, longitude: 7.453619 },
    { latitude: 51.503333, longitude: -0.119722 },
]);

Returns the length of the path in meters as number.

getDistanceFromLine(point, lineStart, lineEnd)

Gets the minimum distance from a point to a line of two points.

geolib.getDistanceFromLine(
    { latitude: 51.516, longitude: 7.456 },
    { latitude: 51.512, longitude: 7.456 },
    { latitude: 51.516, longitude: 7.459 }
);

Returns the shortest distance to the given line as number.

getBoundsOfDistance(point, distance)

Computes the bounding coordinates of all points on the surface of the earth less than or equal to the specified great circle distance.

geolib.getBoundsOfDistance(
    { latitude: 34.090166, longitude: -118.276736555556 },
    1000
);

Returns an array with the southwestern and northeastern coordinates.

isPointInLine(point, lineStart, lineEnd)

Calculates if given point lies in a line formed by start and end.

geolib.isPointInLine(
    { latitude: 0, longitude: 10 },
    { latitude: 0, longitude: 0 },
    { latitude: 0, longitude: 15 }
);

sexagesimalToDecimal(value)

Converts a sexagesimal coordinate into decimal format

geolib.sexagesimalToDecimal(`51° 29' 46" N`);

Returns the new value as decimal number.

decimalToSexagesimal(value)

Converts a decimal coordinate to sexagesimal format

geolib.decimalToSexagesimal(51.49611111); // -> 51° 29' 46`

Returns the new value as sexagesimal string.

geolib.getLatitude(point, raw = false)

geolib.getLongitude(point, raw = false)

Returns the latitude/longitude for a given point and converts it to decimal. If the second argument is set to true it does not convert the value to decimal.

geolib.getLatitude({ lat: 51.49611, lng: 7.38896 }); // -> 51.49611
geolib.getLongitude({ lat: 51.49611, lng: 7.38896 }); // -> 7.38896

Returns the value as decimal or in its original format if the second argument was set to true.

toDecimal(point)

Checks if a coordinate is already in decimal format and, if not, converts it to. Works with single values (e.g. 51° 32' 17") and complete coordinates (e.g. {lat: 1, lon: 1}) as long as it in a supported format.

geolib.toDecimal(`51° 29' 46" N`); // -> 51.59611111
geolib.toDecimal(51.59611111); // -> 51.59611111

Returns a decimal value for the given input value.

computeDestinationPoint(point, distance, bearing, radius = earthRadius)

Computes the destination point given an initial point, a distance (in meters) and a bearing (in degrees). If no radius is given it defaults to the mean earth radius of 6,371,000 meters.

Attention: this formula is not 100% accurate (but very close though).

geolib.computeDestinationPoint(
    { latitude: 52.518611, longitude: 13.408056 },
    15000,
    180
);
geolib.computeDestinationPoint(
    [13.408056, 52.518611]
    15000,
    180
);

Returns the destination in the same format as the input coordinates. So if you pass a GeoJSON point, you will get a GeoJSON point.

getAreaOfPolygon(points)

Calculates the surface area of a polygon.

geolib.getAreaOfPolygon([
    [7.453635617650258, 51.49320556213869],
    [7.454583481047989, 51.49328893754685],
    [7.454778172179346, 51.49240881084831],
    [7.453832678225655, 51.49231619246726],
    [7.453635617650258, 51.49320556213869],
]);

Returns the result as number in square meters.

getCoordinateKeys(point)

Gets the property names of that are used in the point in a normalized form:

geolib.getCoordinateKeys({ lat: 1, lon: 1 });
// -> { latitude: 'lat', longitude: 'lon' }

Returns an object with a latitude and a longitude property. Their values are the property names for latitude and longitude that are used in the passed point. Should probably only be used internally.

getCoordinateKey(point, keysToLookup)

Is used by getCoordinateKeys under the hood and returns the property name out of a list of possible names.

geolib.getCoordinateKey({ latitude: 1, longitude: 2 }, ['lat', 'latitude']);
// -> latitude

Returns the name of the property as string or undefined if no there was no match.

isValidCoordinate(point)

Checks if a given point has at least a latitude and a longitude and is in a supported format.

// true:
geolib.isValidCoordinate({ latitude: 1, longitude: 2 });

// false, longitude is missing:
geolib.isValidCoordinate({ latitude: 1 });

// true, GeoJSON format:
geolib.isValidCoordinate([2, 1]);

Returns true or false.

getSpeed(startPointWithTime, endPointWithTime)

Calculates the speed between two points within a given time span.

geolib.getSpeed(
    { latitude: 51.567294, longitude: 7.38896, time: 1360231200880 },
    { latitude: 52.54944, longitude: 13.468509, time: 1360245600880 }
);

Return the speed in meters per second as number.

convertSpeed(value, unit)

Converts the result from getSpeed into a more human friendly format. Currently available units are mph and kmh.

Units

unit can be one of:

  • kmh (kilometers per hour)
  • mph (miles per hour)
geolib.convertSpeed(29.8678, 'kmh'));

Returns the converted value as number.

convertDistance(value, unit)

Converts a given distance (in meters) into another unit.

Units

unit can be one of:

  • m (meter)
  • km (kilometers)
  • cm (centimeters)
  • mm (millimeters)
  • mi (miles)
  • sm (seamiles)
  • ft (feet)
  • in (inches)
  • yd (yards)
geolib.convertDistance(14200, 'km'); // 14.2
geolib.convertDistance(500, 'km'); // 0.5

Returns the converted distance as number.

convertArea(value, unit)

Converts the result from getAreaForPolygon into a different unit.

Units

unit can be one of:

  • m2, sqm (square meters)
  • km2, sqkm (square kilometers)
  • ha (hectares)
  • a (ares)
  • ft2, sqft (square feet)
  • yd2, sqyd (square yards)
  • in2, sqin (square inches)
geolib.convertArea(298678, 'km2'));

Returns the converted area as number.

wktToPolygon(wkt)

Converts the Well-known text (a.k.a WKT) to polygon that Geolib understands. https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry#Geometric_Objects

geolib.wktToPolygon('POLYGON ((30 10.54321, 40 40, 20 40, 10 20, 30 10))');
// [
//     { latitude: 10.54321, longitude: 30 },
//     { latitude: 40, longitude: 40 },
//     { latitude: 40, longitude: 20 },
//     { latitude: 20, longitude: 10 },
//     { latitude: 10, longitude: 30 },}
// ]

Returns the array of coordinates.