npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

genetic

v0.3.1

Published

Implementation of genetic algorithms for nodejs

Downloads

310

Readme

Genetic

Genetic is a node.js implementation of genetic optimization algorithms. It's pretty asyncronous, so you can use it in your web applications without risking of blocking your application.

Download

Releases are available for download from GitHub. Alternatively, you can install using Node Package Manager (npm):

npm install genetic

How to use

For this example we will optimize parameters of function

f(a,b,c) = a^2+b+c

which is pretty straightforward. We will try to find best values to maximize value of entire function - which, as you could easily see are a = 1, b = 1 and c = 1 with optimal function value equals to 3 (we assume that a, b and c belongs to interval [0,1)).

A possible set of (a,b,c) values we will call a 'solution'.

All solutions in genetic are treated as hash objects without function members.

Note: don't use field named score - it's reserved for internal use

All code for the example could be found in 'test/mytest.js' file as a part of the package. Feel free to use it as a template for your solutions.

To use genetic you need to provide several functions specific to your problem, and pass them as members of options object used as an argument to genetic.Task class constructor.

getRandomSolution(callback)

This function used by genetic to generate random solution.

Arguments

  • callback(solution) - function to call when you create your random solution.

Example

For our example it could look like:

function getRandomSolution(callback) {
  var solution = { a: Math.random(), b: Math.random(), c: Math.random() }
  callback(solution)
}

fitness(solution, callback)

One of the most important functions - it's responsible to calculate measure how good your solution is. For example, in Travelling salesman problem it's a total distance traveled.

Note: calculated values must be non-negative

Arguments

  • solution - solution you must calculate fitness for
  • callback(fitnessValue) - function to call when you calculated fitness function value

Example

For our example it could look like:

function fitness(solution, callback) {
  callback(Math.pow(solution.a,2)+solution.b+solution.c)
}

mutate(solution, callback)

Function to mutate solution. Probability of mutation is defined by mutateProbability field of options object (see below). Mutation is used to slightly alter one of your existing solution (mostly random) to provide diversity in you developing population.

Note: It will be better, if you create a new solution object instead of modifying original, passed as argument

Arguments

  • solution - existing solution to mutate
  • callback(mutatedSolution) - function to call with you new mutated solution as argument

Example

For our example it randomly changes one of our solution field to random one. It also could be not modified at all, but it's not an issue for our example. For real problems you better to ensure that some changes will be made actually.

 function mutate(solution, callback) {
  if (Math.random()<0.3) {
    solution.a = Math.random()
  }
  if (Math.random()<0.3) {
    solution.b = Math.random()
  }
  if (Math.random()<0.3) {
    solution.c = Math.random()
  }
  callback(solution)
}

crossover(parent1, parent2, callback)

A function for two parents reproduction - it should produce a new solution by mixing attributes of parents.

Note: produce child as a new object, don't modify parents.

Arguments

  • parent1, parent2 - existing solutions to act as parents for new one
  • callback(childSolution) - function to call with you new child solution as argument

Example

For our example it could look like:

function crossover(parent1, parent2, callback) {
  var child = {}
  if (Math.random()>0.5) {
    child.a = parent1.a    
  }
  else {
    child.a = parent2.a
  }
  if (Math.random()>0.5) {
    child.b = parent1.b
  }
  else {
    child.b = parent2.b
  }
  if (Math.random()>0.5) {
    child.c = parent1.c
  }
  else {
    child.c = parent2.c
  }
  callback(child)
}

stopCriteria()

This is a syncronous function which determines how long genetic algorithm will work. During the process it will act as a 'until' criteria - so algorithm stops, when this function returns true.

Note: this function will work in context of our Task (this = Task object), so you could refer to Task object fields to determine time to stop. You could inspect source code of '/lib/genetic/Task.js' to figure out possible data to determine your stopping condition on.

Example

In our example we will just iterate our algorithm for limited number of times. Do write it, we use Task field named generation that acts like a counter for number of current generation. So, to run for 100 generations we will write it as follows:

function stopCriteria() {
  return (this.generation == 100)
}

Other options to stopping criterias is a time bounds, founding stable solutions, and other - you could look in the appropriate papers and books for ideas. I will try to implement some standard realizations you could use as part of the library to avoid writing this function each time manually.

Task instantiation

Actual work starts when you prepare options object and pass it to Task class constructor. Let's examine options object structure:

 options = { getRandomSolution : getRandomSolution  // previously described to produce random solution
        , popSize : 500  // population size
        , stopCriteria : stopCriteria  // previously described to act as stopping criteria for entire process
        , fitness : fitness  // previously described to measure how good your solution is
        , minimize : false  // whether you want to minimize fitness function. default is `false`, so you can omit it
        , mutateProbability : 0.1  // mutation chance per single child generation
        , mutate : mutate  // previously described to implement mutation
        , crossoverProbability : 0.3 // crossover chance per single child generation
        , crossover : crossover // previously described to produce child solution by combining two parents
      }

Then you create instance of Task class:

var Task = require('genetic').Task
  , taskInstance = new Task(options)

And invoke run method:

t.run(function (stats) { console.log('results', stats)})

When the run completes you'll get best/worst solution on the event 'run finished' (see earlier) or as argument to callback function passed to 'run' method.

  { minScore: 0.011558832842334069,
    maxScore: 1.72994095208024,
    min: 
     { a: 0.034523882903158665,
       b: 0.0032279810402542353,
       c: 0.007138953311368823 },
    max: 
     { a: 0.8740309532731771,
       b: 0.922393745277077,
       c: 0.04361709952354431 },
    avg: 0.1829793990352273,
  }

The same object is passed with event 'statistics' emitted on each new generation iteration - so you can monitor how you process goes.

Event model

Genetic implements sophisticated event model so you can control how your optimization process works. I will fill this chapter later. Meanwhile you could examine shipped sample - look in 'test/mytest.js' file.