npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

generatorics

v1.1.0

Published

Efficient Combinatorics library for JavaScript using ES2015 generator functions. Generate power set, combination, and permutation.

Downloads

29,224

Readme

Generatorics

An efficient combinatorics library for JavaScript utilizing ES2015 generators. Generate combinations, permutations, and power sets of arrays or strings.

  • Node
npm install generatorics
var G = require('generatorics');
  • Browser
bower install generatorics
<script src="file/path/to/generatorics.js"></script>

Note: This module is not transpiled for compatibility, as it degrades the performance. Check your browser/node version.

Usage

power set

for (var subset of G.powerSet(['a', 'b', 'c'])) {
  console.log(subset);
}
// [ ]
// [ 'a' ]
// [ 'a', 'b' ]
// [ 'a', 'b', 'c' ]
// [ 'a', 'c' ]
// [ 'b' ]
// [ 'b', 'c' ]
// [ 'c' ]

permutation

for (var perm of G.permutation(['a', 'b', 'c'], 2)) {
  console.log(perm);
}
// [ 'a', 'b' ]
// [ 'a', 'c' ]
// [ 'b', 'a' ]
// [ 'b', 'c' ]
// [ 'c', 'a' ]
// [ 'c', 'b' ]

for (var perm of G.permutation(['a', 'b', 'c'])) { // assumes full length of array
  console.log(perm);
}
// [ 'a', 'b', 'c' ]
// [ 'a', 'c', 'b' ]
// [ 'b', 'a', 'c' ]
// [ 'b', 'c', 'a' ]
// [ 'c', 'b', 'a' ]
// [ 'c', 'a', 'b' ]

combination

for (var comb of G.combination(['a', 'b', 'c'], 2)) {
  console.log(comb);
}
// [ 'a', 'b' ]
// [ 'a', 'c' ]
// [ 'b', 'c' ]

For efficiency, each array being yielded is the same one being mutated on each iteration. DO NOT mutate the array.

var combs = [];
for (var comb of G.combination(['a', 'b', 'c'], 2)) {
  combs.push(comb);
}
console.log(combs);
// [ [ 'b', 'c' ], [ 'b', 'c' ], [ 'b', 'c' ] ]

You can clone if necessary, or use the clone submodule

permutation of combination

for (var perm of G.permutationCombination(['a', 'b', 'c'])) {
  console.log(perm);
}
// [ ]
// [ 'a' ]
// [ 'a', 'b' ]
// [ 'a', 'b', 'c' ]
// [ 'a', 'c' ]
// [ 'a', 'c', 'b' ]
// [ 'b' ]
// [ 'b', 'a' ]
// [ 'b', 'a', 'c' ]
// [ 'b', 'c' ]
// [ 'b', 'c', 'a' ]
// [ 'c' ]
// [ 'c', 'a' ]
// [ 'c', 'a', 'b' ]
// [ 'c', 'b' ]
// [ 'c', 'b', 'a' ]

cartesian product

for (var prod of G.cartesian([0, 1, 2], [0, 10, 20], [0, 100, 200])) {
  console.log(prod);
}
// [ 0, 0, 0 ],  [ 0, 0, 100 ],  [ 0, 0, 200 ]
// [ 0, 10, 0 ], [ 0, 10, 100 ], [ 0, 10, 200 ]
// [ 0, 20, 0 ], [ 0, 20, 100 ], [ 0, 20, 200 ]
// [ 1, 0, 0 ],  [ 1, 0, 100 ],  [ 1, 0, 200 ]
// [ 1, 10, 0 ], [ 1, 10, 100 ], [ 1, 10, 200 ]
// [ 1, 20, 0 ], [ 1, 20, 100 ], [ 1, 20, 200 ]
// [ 2, 0, 0 ],  [ 2, 0, 100 ],  [ 2, 0, 200 ]
// [ 2, 10, 0 ], [ 2, 10, 100 ], [ 2, 10, 200 ]
// [ 2, 20, 0 ], [ 2, 20, 100 ], [ 2, 20, 200 ]

base N

for (var num of G.baseN(['a', 'b', 'c'])) {
  console.log(num);
}
// [ 'a', 'a', 'a' ], [ 'a', 'a', 'b' ], [ 'a', 'a', 'c' ]
// [ 'a', 'b', 'a' ], [ 'a', 'b', 'b' ], [ 'a', 'b', 'c' ]
// [ 'a', 'c', 'a' ], [ 'a', 'c', 'b' ], [ 'a', 'c', 'c' ]
// [ 'b', 'a', 'a' ], [ 'b', 'a', 'b' ], [ 'b', 'a', 'c' ]
// [ 'b', 'b', 'a' ], [ 'b', 'b', 'b' ], [ 'b', 'b', 'c' ]
// [ 'b', 'c', 'a' ], [ 'b', 'c', 'b' ], [ 'b', 'c', 'c' ]
// [ 'c', 'a', 'a' ], [ 'c', 'a', 'b' ], [ 'c', 'a', 'c' ]
// [ 'c', 'b', 'a' ], [ 'c', 'b', 'b' ], [ 'c', 'b', 'c' ]
// [ 'c', 'c', 'a' ], [ 'c', 'c', 'b' ], [ 'c', 'c', 'c' ]

Clone Submodule

Each array yielded from the generator is actually the same array in memory, just mutated to have different elements. This is to avoid the unnecessary creation of a bunch of arrays, which consume memory. As a result, you get a strange result when trying to generate an array.

var combs = G.combination(['a', 'b', 'c'], 2);
console.log([...combs]);
// [ [ 'b', 'c' ], [ 'b', 'c' ], [ 'b', 'c' ] ]

Instead, you can use the clone submodule.

var combs = G.clone.combination(['a', 'b', 'c'], 2);
console.log([...combs]);
// [ [ 'a', 'b' ], [ 'a', 'c' ], [ 'b', 'c' ] ]

G.clone

This submodule produces generators that yield a different array on each iteration in case you need to mutate it. The combination, permutation, powerSet, permutationCombination, baseN, baseNAll, and cartesian methods are provided on this submodule.

Cool things to do with ES2015 generators

var combs = G.clone.combination([1, 2, 3], 2);

// "for-of" loop
for (let comb of combs) {
  console.log(comb);
}

// generate arrays
Array.from(combs);
[...combs];

// generate sets
new Set(combs);

// spreading in function calls
console.log(...combs);

Writing a code generator? Need to produce an infinite stream of minified variable names?

No problem! Just pass in a collection of all your valid characters and start generating.

var mininym = G.baseNAll('abcdefghijklmnopqrstuvwxyz$#')
var name = mininym.next().value.join('')
global[name] = 'some value'

Card games anyone?

var cards = [...G.clone.cartesian('♠♥♣♦', 'A23456789JQK')];
console.log(G.shuffle(cards));
// [ [ '♦', '6' ], [ '♠', '6' ], [ '♣', '7' ], [ '♥', 'K' ],
//   [ '♣', 'J' ], [ '♥', '4' ], [ '♦', '2' ], [ '♥', '9' ],
//   [ '♦', 'Q' ], [ '♠', 'Q' ], [ '♠', '4' ], [ '♠', 'K' ],
//   [ '♥', '3' ], [ '♥', '7' ], [ '♠', '5' ], [ '♦', '7' ],
//   [ '♥', '5' ], [ '♣', 'Q' ], [ '♣', '9' ], [ '♠', 'A' ],
//   [ '♣', '4' ], [ '♣', '3' ], [ '♥', 'A' ], [ '♥', '8' ],
//   [ '♣', '8' ], [ '♦', '8' ], [ '♠', '8' ], [ '♣', '5' ],
//   [ '♥', '2' ], [ '♥', 'Q' ], [ '♦', 'A' ], [ '♥', '6' ],
//   [ '♠', '2' ], [ '♣', '6' ], [ '♠', '3' ], [ '♦', 'K' ],
//   [ '♦', 'J' ], [ '♠', '7' ], [ '♥', 'J' ], [ '♦', '5' ],
//   [ '♦', '9' ], [ '♦', '3' ], [ '♠', '9' ], [ '♣', '2' ],
//   [ '♣', 'A' ], [ '♣', 'K' ], [ '♦', '4' ], [ '♠', 'J' ] ]

Documentation

G

G.factorial(n) ⇒ Number

Calculates a factorial

Kind: static method of G
Returns: Number - n!

| Param | Type | Description | | --- | --- | --- | | n | Number | The number to operate the factorial on. |

G.factoradic(n) ⇒ Array

Converts a number to the factorial number system. Digits are in least significant order.

Kind: static method of G
Returns: Array - digits of n in factoradic in least significant order

| Param | Type | Description | | --- | --- | --- | | n | Number | Integer in base 10 |

G.P(n, k) ⇒ Number

Calculates the number of possible permutations of "k" elements in a set of size "n".

Kind: static method of G
Returns: Number - n P k

| Param | Type | Description | | --- | --- | --- | | n | Number | Number of elements in the set. | | k | Number | Number of elements to choose from the set. |

G.C(n, k) ⇒ Number

Calculates the number of possible combinations of "k" elements in a set of size "n".

Kind: static method of G
Returns: Number - n C k

| Param | Type | Description | | --- | --- | --- | | n | Number | Number of elements in the set. | | k | Number | Number of elements to choose from the set. |

G.choices(n, k, [options]) ⇒ Number

Higher level method for counting number of possible combinations of "k" elements from a set of size "n".

Kind: static method of G
Returns: Number - Number of possible combinations.

| Param | Type | Description | | --- | --- | --- | | n | Number | Number of elements in the set. | | k | Number | Number of elements to choose from the set. | | [options] | Object | | | options.replace | Boolean | Is replacement allowed after each choice? | | options.ordered | Boolean | Does the order of the choices matter? |

G.combination(arr, [size]) ⇒ Generator

Generates all combinations of a set.

Kind: static method of G
Returns: Generator - yields each combination as an array

| Param | Type | Default | Description | | --- | --- | --- | --- | | arr | Array | String | | The set of elements. | | [size] | Number | arr.length | Number of elements to choose from the set. |

G.permutation(arr, [size]) ⇒ Generator

Generates all permutations of a set.

Kind: static method of G
Returns: Generator - yields each permutation as an array

| Param | Type | Default | Description | | --- | --- | --- | --- | | arr | Array | String | | The set of elements. | | [size] | Number | arr.length | Number of elements to choose from the set. |

G.powerSet(arr) ⇒ Generator

Generates all possible subsets of a set (a.k.a. power set).

Kind: static method of G
Returns: Generator - yields each subset as an array

| Param | Type | Description | | --- | --- | --- | | arr | Array | String | The set of elements. |

G.permutationCombination(arr) ⇒ Generator

Generates the permutation of the combinations of a set.

Kind: static method of G
Returns: Generator - yields each permutation as an array

| Param | Type | Description | | --- | --- | --- | | arr | Array | String | The set of elements. |

G.baseN(arr, [size]) ⇒ Generator

Generates all possible "numbers" from the digits of a set.

Kind: static method of G
Returns: Generator - yields all digits as an array

| Param | Type | Default | Description | | --- | --- | --- | --- | | arr | Array | String | | The set of digits. | | [size] | Number | arr.length | How many digits will be in the numbers. |

G.baseNAll(arr) ⇒ Generator

Infinite generator for all possible "numbers" from a set of digits.

Kind: static method of G
Returns: Generator - yields all digits as an array

| Param | Type | Description | | --- | --- | --- | | arr | Array | String | The set of digits |

G.cartesian(...sets) ⇒ Generator

Generates the cartesian product of the sets.

Kind: static method of G
Returns: Generator - yields each product as an array

| Param | Type | Description | | --- | --- | --- | | ...sets | Array | String | variable number of sets of n elements. |

G.shuffle(arr) ⇒ Array

Shuffles an array in place using the Fisher–Yates shuffle.

Kind: static method of G
Returns: Array - a random, unbiased perutation of arr

| Param | Type | Description | | --- | --- | --- | | arr | Array | A set of elements. |