npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

functionscript

v2.10.6

Published

An API gateway and framework for turning functions into web services

Downloads

236

Readme

FunctionScript

FunctionScript Logo

travis-ci build npm version

An API gateway and framework for turning functions into web services

FunctionScript is a language and specification for turning JavaScript functions into typed HTTP APIs. It allows JavaScript (Node.js) functions to be seamlessly exported as HTTP APIs by defining what the HTTP interface will look like and how it behaves in the preceding comment block - including type-safety mechanisms.

FunctionScript arose out of a need to introduce developers with little programming experience, but familiarity with JavaScript, to full-stack API development and best practices around defining and connecting HTTP application interfaces. For this reason, the goals of the language are significantly different than TypeScript. FunctionScript is intended to provide an easy introduction to API development for those of any skill level, while maintaining professional power and flexibility.

FunctionScript is the primary specification underpinning the Autocode platform and its standard library of APIs.

Quick Example of a FunctionScript API

The following is a real-world excerpt of an API that can be used to query a Spreadsheet like a Database. The underlying implementation has been hidden, but the parameters for the API can be seen.

/**
* Select Rows from a Spreadsheet by querying it like a Database
* @param {string} spreadsheetId The id of the Spreadsheet.
* @param {string} range The A1 notation of the values to use as a table.
* @param {enum} bounds Specify the ending bounds of the table.
*   ["FIRST_EMPTY_ROW", "FIRST_EMPTY_ROW"]
*   ["FULL_RANGE", "FULL_RANGE"]
* @param {object} where A list of column values to filter by.
* @param {object} limit A limit representing the number of results to return
* @ {number} offset The offset of records to begin at
* @ {number} count The number of records to return, 0 will return all
* @returns {object} selectQueryResult
* @ {string} spreadsheetId
* @ {string} range
* @ {array} rows An array of objects corresponding to row values
*/
module.exports = async (
  spreadsheetId = null,
  range,
  bounds = 'FIRST_EMPTY_ROW',
  where = {},
  limit = {offset: 0, count: 0},
  context
) => {

  /* implementation-specific JavaScript */

  return {/* some data */};

};

It generates an API which accepts (and type checks against, following schemas):

  • spreadsheetId A string
  • range A string
  • bounds An enum, can be either "FIRST_EMPTY_ROW" or "FULL_RANGE"
  • where An object
  • limit An object that must contain:
    • limit.offset, a number
    • limit.count, a number

It will return an object:

  • selectQueryResult
    • selectQueryResult.spreadsheetId must be a string
    • selectQueryResult.range must be a string
    • selectQueryResult.rows must be an array

Background

The impetus for creating FunctionScript is simple: it stems from the initial vision of Autocode. We believe the modern web is missing a base primitive - the API. Daily, computer systems and developers around the planet make trillions of requests to perform specific tasks: process credit card payments with Stripe, send team messages via Slack, create SMS messages with Twilio. These requests are made primarily over HTTP: Hypertext Transfer Protocol. However, little to no "hypertext" is actually sent or received, these use cases have emerged in an ad hoc fashion as a testament to the power of the world wide web. Oftentimes, API standardization attempts have been presented as band-aids instead of solutions: requiring developers to jury rig a language, framework, markup language and hosting provider together just to get a simple "hello world" out the door.

By creating API development standards as part of a language specification instead of a framework, FunctionScript truly treats the web API as a base primitive of software development instead of an afterthought. This allows teams to be able to deliver high-quality APIs with the same fidelity as organizations like Stripe in a fraction of the time without requiring any additional tooling.

Table of Contents

  1. Introduction
  2. Why FunctionScript?
  3. FunctionScript Examples
    1. All Available Types
  4. Specification
    1. FunctionScript Resource Definition
    2. Context Definition
    3. Parameters
      1. Constraints
      2. Types
      3. Type Conversion
      4. Nullability
    4. FunctionScript Resource Requests
      1. Context
      2. Errors
        1. ClientError
        2. ParameterError
          1. Details: Required
          2. Details: Invalid
        3. FatalError
        4. RuntimeError
        5. ValueError
  5. FunctionScript Server and Gateway: Implementation
  6. Acknowledgements

Introduction

To put it simply, FunctionScript defines semantics and rules for turning exported JavaScript (Node.js) functions into strongly-typed, HTTP-accessible web APIs. In order to use FunctionScript, you'd set up your own FunctionScript Gateway or you would use an existing FunctionScript-compliant service like Autocode.

FunctionScript allows you to turn something like this...

// hello_world.js

/**
* My hello world function!
*/
module.exports = (name = 'world') => {

  return `hello ${name}`;

};

Into a web API that can be called over HTTP like this (GET):

https://$user.api.stdlib.com/service@dev/hello_world?name=joe

Or like this (POST):

{
  "name": "joe"
}

And gives a result like this:

"hello joe"

Or, when a type mismatch occurs (like {"name":10}):

{
  "error": {
    "type":"ParameterError"
    ...
  }
}

Why FunctionScript?

FunctionScript is intended primarily to provide a scaffold to build and deliver APIs easily. It works best as a part of the Autocode platform which consumes the FunctionScript API definitions, hosts the code, generates documentation from the definitions, and automatically handles versioning and environment management. The reason we've open sourced the language specification is so that developers have an easier time developing against the highly modular API ecosystem we've created and can contribute their thoughts and requests.

You can break down the reason for the development of FunctionScript into a few key points:

  • Modern developers and people being introduced to software development for the first time are often trying to build web-native scripts. It is exceedingly difficult to go from "zero to API" in less than a few hours, writing code is just the first step of many. We'd like it to be the first and only step.

  • No true standards around APIs have ever been built or enforced in a rigorous manner across the industry. Primarily, opinions around SOAP, REST and GraphQL requests have been built into frameworks and tools instead of a language specification, which has artificially inflated the cognitive overhead required to ship functional web-based software.

  • Companies like Stripe and Twilio which have built and enforced their own API development paradigms internally have unlocked massive developer audiences in short timeframes, indicating the power of treating web APIs as a first-class citizen of development.

  • Serverless computing, specifically the Function-as-a-Service model of web-based computation, has made API development significantly more accessible but has not brought us over the "last-mile" hump.

  • JavaScript, specifically Node.js, is an ideal target for API development standardization due to its accessibility (front-end and back-end), growth trajectory, and flexibility. Most new developers are introduced to JavaScript out of necessity.

  • As opposed to something like TypeScript, FunctionScript helps newer entrants to software development by extending JavaScript with very little overhead. It adds types around only the HTTP interface, leaving the majority of the language footprint untouched but strengthening the "weakest" and least predictable link in the development chain: user input.

With FunctionScript, it's our goal to develop a language specification for building APIs that automatically provides a number of necessary features without additional tooling:

  • Standardized API Calling Conventions (HTTP)
  • Type-Safety Mechanisms at the HTTP -> Code Interface
  • Automatically Generated API Documentation

FunctionScript Examples

We'll be updating this section with examples for you to play with and modify on your own.

All Available Types

Here's an example of a hypothetical createUser.js function that can be used to create a user resource. It includes all available type definitions.

/**
* @param {integer} id ID of the User
* @param {string} username Name of the user
* @param {number} age Age of the user
* @param {float} communityScore Community score (between 0.00 and 100.00)
* @param {object} metadata Key-value pairs corresponding to additional user data
* @ {string} createdAt Created at ISO-8601 String. Required as part of metadata.
* @ {?string} notes Additional notes. Nullable (not required) as part of object
* @param {array} friendIds List of friend ids
* @ {integer} friendId ID of a user (forces array to have all integer entries)
* @param {buffer} profilePhoto Base64-encoded filedata, read into Node as a Buffer
* @param {enum} userGroup The user group. Can be "USER" (read as 0) or "ADMIN" (read as 9)
*   ["USER", 0]
*   ["ADMIN", 9]
* @param {boolean} overwrite Overwrite current user data, if username matching
* @returns {object.http} successPage API Returns an HTTP object (webpage)
*/
module.exports = async (id = null, username, age, communityScore, metadata, friendsIds = [], profilePhoto, userGroup, overwrite = false) => {

  // NOTE: id, friendIds and overwrite will be OPTIONAL as they have each been
  //       provided a defaultValue

  // Implementation-specific code here

  // API Output
  // NOTE: Note that because "object.http" was specified, this MUST follow the
  //       object.http schema: headers, statusCode, body

  return {
    headers: {'Content-Type': 'text/html'},
    statusCode: 200,
    body: Buffer.from('Here is a success message!')
  };

};

Specification

FunctionScript Resource Definition

A FunctionScript definition is a JSON output, traditionally saved as a definition.json file, generated from a JavaScript file, that respects the following format.

Given a function like this (filename my_function.js):

// my_function.js

/**
* This is my function, it likes the greek alphabet
* @param {String} alpha Some letters, I guess
* @param {Number} beta And a number
* @param {Boolean} gamma True or false?
* @returns {Object} some value
*/
module.exports = async (alpha, beta = 2, gamma, context) => {
  /* your code */
};

The FunctionScript parser will generate a definition.json file that looks like the following:

{
  "name": "my_function",
  "format": {
    "language": "nodejs",
    "async": true
  },
  "description": "This is my function, it likes the greek alphabet",
  "bg": {
    "mode": "info",
    "value": ""
  },
  "context": null,
  "params": [
    {
      "name": "alpha",
      "type": "string",
      "description": "Some letters, I guess"
    },
    {
      "name": "beta",
      "type": "number",
      "defaultValue": 2,
      "description": "And a number"
    },
    {
      "name": "gamma",
      "type": "boolean",
      "description": "True or false?"
    }
  ],
  "returns": {
    "type": "object",
    "description": "some value"
  }
}

A definition must implement the following fields;

| Field | Definition | | ----- | ---------- | | name | A user-readable function name (used to execute the function), must match /[A-Z][A-Z0-9_]*/i | | format | An object requiring a language field, along with any implementation details | | description | A brief description of what the function does, can be empty ("") | | bg | An object containing "mode" and "value" parameters specifying the behavior of function responses when executed in the background | | params | An array of NamedParameters, representing function arguments | returns | A Parameter without a defaultValue representing function return value |

Context Definition

If the function does not access execution context details, this should always be null. If it is an object, it indicates that the function does access context details (i.e. remoteAddress, http headers, etc. - see Context).

This object does not have to be empty, it can contain vendor-specific details; for example "context": {"user": ["id", "email"]} may indicate that the execution context specifically accesses authenticated user id and email addresses.

Parameters

Parameters have the following format;

| Field | Required | Definition | | ----- | -------- | ---------- | | name | NamedParameter Only | The name of the Parameter, must match /[A-Z][A-Z0-9_]*/i | | type | yes | A string representing a valid FunctionScript type | | description | yes | A short description of the parameter, can be empty string ("") | | defaultValue | no | Must match the specified type. If type is not provided, this parameter is required |

Types

As FunctionScript interfaces with "userland" (user input), a strongly typed signature is enforced for all inbound parameters. The following is a list of supported FunctionScript types.

| Type | Definition | Example Input Values (JSON) | | ---- | ---------- | -------------- | | boolean | True or False | true or false | | string | Basic text or character strings | "hello", "GOODBYE!" | | number | Any double-precision Floating Point value | 2e+100, 1.02, -5 | | float | Alias for number | 2e+100, 1.02, -5 | | integer | Subset of number, integers between -2^53 + 1 and +2^53 - 1 (inclusive) | 0, -5, 2000 | | object | Any JSON-serializable Object | {}, {"a":true}, {"hello":["world"]} | | object.http | An object representing an HTTP Response. Accepts headers, body and statusCode keys | {"body": "Hello World"}, {"statusCode": 404, "body": "not found"}, {"headers": {"Content-Type": "image/png"}, "body": Buffer.from(...)} | | array | Any JSON-serializable Array | [], [1, 2, 3], [{"a":true}, null, 5] | | buffer | Raw binary octet (byte) data representing a file | {"_bytes": [8, 255]} or {"_base64": "d2h5IGRpZCB5b3UgcGFyc2UgdGhpcz8/"} | | any | Any value mentioned above | 5, "hello", [] | | enum | An enumeration that maps input strings to values of your choosing | "STRING_OF_YOUR_CHOICE" |

Type Conversion

The buffer type will automatically be converted from any object with a single key-value pair matching the footprints {"_bytes": []} or {"_base64": ""}.

Otherwise, parameters provided to a function are expected to match their defined types. Requests made over HTTP via query parameters or POST data with type application/x-www-form-urlencoded will be automatically converted from strings to their respective expected types, when possible (see FunctionScript Resource Requests below):

| Type | Conversion Rule | | ---- | --------------- | | boolean | "t" and "true" become true, "f" and "false" become false, otherwise do not convert | | string | No conversion | | number | Determine float value, if NaN do not convert, otherwise convert | | float | Determine float value, if NaN do not convert, otherwise convert | | integer | Determine float value, if NaN do not convert, may fail integer type check if not in range | | object | Parse as JSON, if invalid do not convert, object may fail type check (array, buffer) | | object.http | Parse as JSON, if invalid do not convert, object may fail type check (array, buffer) | | array | Parse as JSON, if invalid do not convert, object may fail type check (object, buffer) | | buffer | Parse as JSON, if invalid do not convert, object may fail type check (object, array) | | any | No conversion | | enum | Read input as string |

Nullability

All types are potentially nullable, an nullability can be defined in two ways:

(1) by setting "defaultValue": null in the NamedParameter definition.

/**
* @param {string} nullableString
*/
module.exports = (nullableString = null) => {
  return `Test ${nullableString}`;
}

(2) By prepending a ? before the type name in the comment definition, i.e.:

/**
* @param {?string} nullableString
*/
module.exports = (nullableString) => {
  return `Test ${nullableString}`;
}

NOTE: That the difference between this two behaviors is that the latter will mean nullableString is both required AND nullable, whereas the former means nullableString has a defaultValue (is optional).

Setting HTTP headers

The object.http type should be used to generate HTTP responses that are intended to return more complex data than simple JSON responses.

You can provide headers, statusCode and body in an object.http response.

For example, to return an image that's of type image/png...

/**
* Retrieves an image
* @param {string} imageName The name of the image
* @returns {object.http} image The result
*/
module.exports = (imageName) => {

  // fetch image, returns a buffer
  let png = imageName === 'cat' ?
    fs.readFileSync(`/images/kitty.png`) :
    fs.readFileSync(`/images/no-image.png`);

  // Forces image/png over HTTP requests, default
  //  for buffer would otherwise be application/octet-stream
  return {
    headers: {'Content-Type': 'image/png'},
    statusCode: 200,
    body: png
  };

};

FunctionScript Resource Requests

FunctionScript requests must complete the following steps;

  1. Ensure the Resource Definition is valid and compliant, either on storage or accession.
  2. Performs a handshake (i.e. HTTP) with initial request details
  3. Accept an Array, Object or a string of URLencoded variables
  4. If over HTTP and query parameters present, query parameters used as URL encoded variables
  5. If over HTTP POST and query parameters present, reject requests that try to specify a POST body as well with a ClientError
  6. If over HTTP POST, requests must include a Content-Type header or a ClientError is immediately returned
  7. If over HTTP POST, Content-Type must be application/json for Array or Object data, or application/x-www-form-urlencoded for string data or a ClientError is immediately returned
  8. If application/x-www-form-urlencoded values are provided (either via POST body or query parameters), convert types based on Type Conversion and knowledge of the function definition and create an Object
  9. If Array: Parameters will be checked for type consistency in the order of the definition params
  10. If Object: Parameters will be checked for type consistency based on names of the definition params
  11. If any inconsistencies are found, cease execution and immediately return a ParameterError
  12. If a parameter has no defaultValue specified and is not provided, immediately return a ParameterError
  13. Try to execute the function, if the function fails to parse or is not valid, immediately return a FatalError
  14. If a function hits a specified timeout (execution time limit), immediately return a FatalError
  15. If a function returns an error (via callback) or one is thrown and not caught, immediately return a RuntimeError
  16. If function returns inconsistent response (does not match returns type), immediately return a ValueError
  17. If no errors are encountered, return the value to the client
  18. If over HTTP and content-type is not being overloaded (i.e. developer specified through a vendor-specific mechanism), return buffer type data as application/octet-stream and any other values as application/json.

Context

Every function intended to be consumed via FunctionScript has the option to specify an optional magic context parameter that receives vendor-specific information about the function execution context - for example, if consumed over HTTP, header details. FunctionScript definitions must specify whether or not they consume a context object. Context objects are extensible but MUST contain the following fields;

| Field | Definition | | ----- | ---------- | | params | An object mapping called parameter names to their values | | http | null if not accessed via http, otherwise an object | | http.headers | If accessed via HTTP, an object containing header values |

Errors

Errors returned by FunctionScript-compliant services must follow the following JSON format:

{
  "error": {
    "type": "ClientError",
    "message": "You know nothing, Jon Snow",
    "details": {}
  }
}

details is an optional object that can provide additional Parameter details. Valid Error types are:

  • ClientError
  • ParameterError
  • FatalError
  • RuntimeError
  • ValueError

ClientError

ClientErrors are returned as a result of bad or malformed client data, including lack of authorization or a missing function (not found). If over HTTP, they must returns status codes in the range of 4xx.

ParameterError

ParameterErrors are a result of Parameters not passing type-safety checks, and must return status code 400 if over HTTP.

Parameter Errors must have the following format;

{
  "error": {
    "type": "ParameterError",
    "message": "ParameterError",
    "details": {...}
  }
}

"details" should be an object mapping parameter names to their respective validation (type-checking) errors. Currently, this specification defines two classifications of a ParameterError for a parameter; required and invalid. The format of "details": {} should follow this format;

Details: Required
{
  "param_name": {
    "message": "((descriptive message stating parameter is required))",
    "required": true
  }
}
Details: Invalid
{
  "param_name": {
    "message": "((descriptive message stating parameter is invalid))",
    "invalid": true,
    "expected": {
      "type": "number"
    },
    "actual": {
      "type": "string",
      "value": "hello world"
    }
  }
}

FatalError

FatalErrors are a result of function mismanagement - either your function could not be loaded, executed, or it timed out. These must return status code 500 if over HTTP.

RuntimeError

RuntimeErrors are a result of uncaught exceptions in your code as it runs, including errors you explicitly choose to throw (or send to clients via a callback, for example). These must return status code 403 if over HTTP.

ValueError

ValueErrors are a result of your function returning an unexpected value based on FunctionScript type-safety mechanisms. These must return status code 502 if over HTTP.

ValueError looks like an invalid ParameterError, where the details Object only ever contains a single key called "returns". These are encountered due to implementation issues on the part of the function developer.

{
  "error": {
    "type": "ValueError",
    "message": "ValueError",
    "details": {
      "returns": {
        "message": "((descriptive message stating return value is invalid))",
        "invalid": true,
        "expected": {
          "type": "boolean"
        },
        "actual": {
          "type": "number",
          "value": 2017
        }
      }
    }
  }
}

FunctionScript Server and Gateway: Implementation

A fully-compliant FunctionScript gateway (that just uses local function resources) is available with this package, simply clone it and run npm test or look at the /tests folder for more information.

The FunctionScript specification is used as the platform specification for Autocode, and is available for local use with the Autocode CLI which relies on this repository as a dependency.

Acknowledgements

FunctionScript is the result of years of concerted effort working to make API development easier. It would not be possible without the personal and financial commitments of some very amazing people and companies. We'd like to thank our customers, investors, supporters, friends and family.

Core Contributors

Notes

The software contained within this repository has been developed and is copyrighted by the Autocode team (Polybit Inc.) and is MIT licensed.