fractals
v1.0.0
Published
Tiny, dependency free library to easily generate fractals
Downloads
35
Maintainers
Readme
Tiny, dependency free library to easily generate fractals
This library allows you to generate fractals in two different ways:
Installation
npm install fractals #npm
yarn add fractals #yarn
Usage
import { IFS, LSystem } from 'fractals';
import type { TBounds } from 'fractals';
// or separtly
import { IFS } from 'fractals/lib/ifs';
import { LSystem } from 'fractals/lib/l';
import type { TBounds } from 'fractals/lib/types';
API
Common types
Both classes implement the IFractal
interface.
type TPoint = [x: number, y: number, meta: Record<string, unknown>];
type TBounds = [maxX: number, maxY: number, minX: number, minY: number];
type TPointCb = (p: TPoint, i: number) => unknown;
interface IFractal {
readonly points: TPoint[]; // Array of generated points
bounds: TBounds; // Bounding box of generated points
run(fn?: TPointCb): void; // Function to start calculation process
}
IFS
An excellent material with many examples about IFS can be read here.
Types
interface IIFSMatrix {
// The probability of choosing the current matrix
p: number;
// A set of constants for the equation for calculating the next point
[$key: string]: number;
}
type TEPoint = { x: number; y: number };
// The equation for calculating the next point
type TEquation = (x: number, y: number, m: IIFSMatrix) => TEPoint;
// The type of the result point. matrixNum - the number of the matrix
// that was chosen to generate the point. It can be useful for
// debugging or coloring points depending on the matrix.
type TIFSPoint = [x: number, y: number, meta: { matrixNum: number }];
Predefined equation
There are two predefined equations:
- affine
- radial
Don't worry, as a code these formulas are not as scary as they seem:
export function affine(x: number, y: number, m: IIFSMatrix): TEPoint {
const { a, b, c, d, e, f } = m;
const newX = x * a + y * b + e;
const newY = x * c + y * d + f;
return { x: newX, y: newY };
}
export function radial(x: number, y: number, m: IIFSMatrix): TEPoint {
const { a, b, t, e, f } = m;
const newX = x * a * Math.cos(t) - y * b * Math.sin(t) + e;
const newY = x * a * Math.sin(t) + y * b * Math.cos(t) + f;
return { x: newX, y: newY };
}
Other classes of simple geometric transformations can also be used to construct the IFS. For example, projective:
X' = (ax*X + bx*Y + cx) / (dx*X + ex*Y + fx)
Y' = (ay*X + by*Y + cy) / (dy*X + ey*Y + fy)
or quadratic:
X' = ax*X*X + bx*X*Y + cx*Y*Y + dx*X + ex*Y + fx
Y' = ay*X*X + by*X*Y + cy*Y*Y + dy*X + ey*Y + fy
Matrices
The required matrix property is p
.
This is the probability of choosing a given matrix.
All other fields depend on the equation. For example,
Barnsley Fern is calculated using affine transformations
with the following matrices:
Transformation | Transition | Probability -------------- | ---------- | ----------- | | 1% | | 85% | | 7% | | 7%
The matrices' configuration will be as follows:
const fern = {
matrices: [
{ a: 0, b: 0, c: 0, d: 0.16, e: 0, f: 0, p: 0.01 },
{ a: 0.85, b: 0.04, c: -0.04, d: 0.85, e: 0, f: 1.6, p: 0.85 },
{ a: 0.2, b: -0.26, c: 0.23, d: 0.22, e: 0, f: 1.6, p: 0.07 },
{ a: -0.15, b: 0.28, c: 0.26, d: 0.24, e: 0, f: 0.44, p: 0.07 },
],
};
Properties
matrices: IIFSMatrix[]
- array of given matricespoints: TIFSPoint[]
- Calculated points.bounds: TBounds
- Bounding box of the calculated points in format [maxX, maxY, minX, minY]. Will be filled in after calling therun()
method.
Methods
constructor(params: IIFSParams)
interface IIFSParams {
// Array of matrices
matrices: IIFSMatrix[];
// Think of this parameter as the scale of the plot.
// The larger the number, the fewer points will be per area unit.
density?: number;
// Number of iterations (points)
iterations?: number;
// Formula for calculating points.
// You can use one of the predefined ones or write your own.
equation?: TEquation;
}
run(callback?)
Starts the calculation process. You can pass a callback function that will be called after each point is calculated. This will help to achieve higher performance by removing the extra cycle for drawing the fractal. Be careful - the bounds of points may be incorrect until the end of the calculation of the entire fractal.
Render function example
function canvasRenderer(canvas: HTMLCanvasElement, fractal: IFS) {
if (!canvas) {
console.warn('canvas is null');
return;
}
const offsetX = fractal.bounds[2];
const offsetY = fractal.bounds[3];
// margins is 10 px
canvas.height = fractal.bounds[1] + Math.abs(fractal.bounds[3]) + 20;
canvas.width = fractal.bounds[0] + Math.abs(fractal.bounds[2]) + 20;
const ctx = canvas.getContext('2d');
ctx.save();
ctx.fillStyle = '#000';
ctx.fillRect(0, 0, canvas.width, canvas.height);
// margins
ctx.translate(-offsetX + 10, offsetY + canvas.height - 10);
ctx.scale(1, -1);
const color = 255 / fractal.matrices.length - 1;
for (let i = 0; i < fractal.points.length; i++) {
const [x, y, { matrixNum }] = fractal.points[i];
ctx.fillStyle = `hsl(${color * m}, 100%, 50%)`;
ctx.fillRect(x, y, 1, 1);
}
ctx.restore();
}
document.addEventListener('DOMContentLoaded', () => {
const fractal = new IFS(config);
fractal.run();
const canvas = document.getElementById('canvas') as HTMLCanvasElement;
canvasRenderer(canvas, fractal);
});
L-system
An excellent material with many examples about L-system can be read here.
Commands
The following commands are supported:
Character | Meaning --------- | ------- F | Move forward by line length drawing a line B | Move backward by line length drawing a line + | Turn left by turning angle − | Turn right by turning angle [ | Push current drawing state onto stack ] | Pop current drawing state from the stack < | Multiply the line length by the line length scale factor > | Divide the line length by the line length scale factor
Types
// The type of the result point.
// paintable - currently used to work with the stack.
// When a point was added as a result of the ']' (pop) command.
type TLPoint = [x: number, y: number, meta: { paintable: boolean }];
Properties
points: TLPoint[]
- Calculated points.bounds: TBounds
- Bounding box of the calculated points in format [maxX, maxY, minX, minY]. Will be filled in after calling therun()
method.
Methods
constructor(params: ILParams)
interface ILParams {
// Initial string string with commands, e.g. 'X'
axiom: string;
// Hash with replacement rules
// {
// F: 'FF', - All occurrences of the character "F" will be replaced with the sequence "FF"
// X: 'F-[[X]+X]+F[+FX]-X', - and all occurrences of the character "X" will be replaced with the sequence "F-[[X]+X]+F[+FX]-X"
// }
rules: Record<string, string>;
// The number of replacement iterations
iterations: number;
// The initial length of the line.
distance: number;
// Angle of rotation.
angle: number;
// Length scaling factor. See commands `<` and `>`
lengthScale?: number;
}
run(callback?)
Starts the calculation process. You can pass a callback function that will be called after each point is calculated. This will help to achieve higher performance by removing the extra cycle for drawing the fractal. Be careful - the bounds of points may be incorrect until the end of the calculation of the entire fractal.
Render function example
function canvasRenderer(canvas: HTMLCanvasElement, fractal: LSystem) {
if (!canvas) {
console.warn('canvas is null');
return;
}
const offsetX = -fractal.bounds[2];
const offsetY = -fractal.bounds[3];
// margins is 10 px
canvas.height = fractal.bounds[1] + Math.abs(fractal.bounds[3]) + 20;
canvas.width = fractal.bounds[0] + Math.abs(fractal.bounds[2]) + 20;
const ctx = canvas.getContext('2d');
ctx.fillStyle = '#000';
ctx.save();
ctx.fillRect(0, 0, canvas.width, canvas.height);
ctx.translate(10, 10); // margins
const color = 255 / fractal.points.length - 1;
for (let i = 1; i < fractal.points.length; i++) {
const [x, y, { paintable }] = fractal.points[i];
if (!paintable) {
continue;
}
ctx.beginPath();
const [startX, startY] = fractal.points[i - 1];
ctx.strokeStyle = `hsl(${color * i}, 100%, 50%)`;
ctx.moveTo(startX + offsetX, startY + offsetY);
ctx.lineTo(x + offsetX, y + offsetY);
ctx.stroke();
ctx.closePath();
}
ctx.restore();
}
document.addEventListener('DOMContentLoaded', () => {
const fractal = new LSystem(config);
fractal.run();
const canvas = document.getElementById('canv') as HTMLCanvasElement;
canvasRenderer(canvas, fractal);
});
Links
- L-System User Notes
- IFS manual
- Iterated Function Systems - From here you can take several matrices and look at an example of the IFS implementation in the clojure language.
- Classic Iterated Function Systems - Lots of interesting articles about fractals. List of well-known fractals with matrices to generate them.