fp-tools
v3.0.0
Published
javascript functional programming utilities
Downloads
11
Readme
fp-tools
Functions, Algebraic Structures, and Pointfree Utilities from Professor Frisby's Mostly Adequate Guide to FP.
Some functions may be missing or renamed. Only Algebraic structures currently are Either (Left, Right), IO, Maybe, and Task. Some functions have been added like gt/gte/lt/lte because the ramda implementation hurts me.
Appendix A: Essential Functions Support
In this appendix, you'll find some basic JavaScript implementations of various functions described in the book. Keep in mind that these implementations may not be the fastest or the most efficient implementation out there; they solely serve an educational purpose.
In order to find functions that are more production-ready, have a peek at ramda, lodash, or folktale.
Note that some functions also refer to algebraic structures defined in the Appendix B
always
// always :: a -> b -> a
const always = curry((a, b) => a);
compose
// compose :: ((a -> b), (b -> c), ..., (y -> z)) -> a -> z
const compose = (...fns: any) => (...args: any) =>
fns.reduceRight((res: any, fn: any) => [fn.call(null, ...res)], args)[0];
curry
// curry :: ((a, b, ...) -> c) -> a -> b -> ... -> c
function curry(fn: (...args: any) => any) {
const arity = fn.length;
return function $curry(...args: any): any {
if (args.length < arity) {
return $curry.bind(null, ...args);
}
return fn.call(null, ...args);
};
}
either
// either :: (a -> c) -> (b -> c) -> Either a b -> c
const either = curry((f, g, e) => {
if (e.isLeft) {
return f(e.$value);
}
return g(e.$value);
});
identity
// identity :: x -> x
const identity = (x) => x;
inspect
export const inspect = (x: any) => {
if (x && typeof x.inspect === 'function') {
return x.inspect();
}
function inspectFn(f: any) {
return f.name ? f.name : f.toString();
}
function inspectTerm(t: any): any {
switch (typeof t) {
case 'string':
return `'${t}'`;
case 'object': {
const ts = Object.keys(t).map((k) => [k, inspect(t[k])]);
return `{${ts.map((kv) => kv.join(': ')).join(', ')}}`;
}
default:
return String(t);
}
}
function inspectArgs(args: any): any {
return Array.isArray(args)
? `[${args.map(inspect).join(', ')}]`
: inspectTerm(args);
}
return typeof x === 'function' ? inspectFn(x) : inspectArgs(x);
};
left
// left :: a -> Either a b
const left = (a) => new Left(a);
liftA2
// liftA2 :: (Applicative f) => (a1 -> a2 -> b) -> f a1 -> f a2 -> f b
const liftA2 = curry((fn, a1, a2) => a1.map(fn).ap(a2));
liftA3
// liftA3 :: (Applicative f) => (a1 -> a2 -> a3 -> b) -> f a1 -> f a2 -> f a3 -> f b
const liftA3 = curry((fn, a1, a2, a3) => a1.map(fn).ap(a2).ap(a3));
maybe
// maybe :: b -> (a -> b) -> Maybe a -> b
const maybe = curry((v, f, m) => {
if (m.isNothing) {
return v;
}
return f(m.$value);
});
nothing
// nothing :: Maybe a
const nothing = Maybe.of(null);
reject
// reject :: a -> Task a b
const reject = (a) => Task.rejected(a);
Appendix B: Algebraic Structures Support
In this appendix, you'll find some basic JavaScript implementations of various algebraic structures described in the book. Keep in mind that these implementations may not be the fastest or the most efficient implementation out there; they solely serve an educational purpose.
In order to find structures that are more production-ready, have a peek at folktale or fantasy- land.
Note that some methods also refer to functions defined in the Appendix A
Compose
const createCompose = curry(
(F, G) =>
class Compose {
constructor(x) {
this.$value = x;
}
[util.inspect.custom]() {
return `Compose(${inspect(this.$value)})`;
}
// ----- Pointed (Compose F G)
static of(x) {
return new Compose(F(G(x)));
}
// ----- Functor (Compose F G)
map(fn) {
return new Compose(this.$value.map((x) => x.map(fn)));
}
// ----- Applicative (Compose F G)
ap(f) {
return f.map(this.$value);
}
},
);
Either
class Either {
constructor(x) {
this.$value = x;
}
// ----- Pointed (Either a)
static of(x) {
return new Right(x);
}
}
Left
class Left extends Either {
get isLeft() {
return true;
}
get isRight() {
return false;
}
static of(x) {
throw new Error(
'`of` called on class Left (value) instead of Either (type)',
);
}
[util.inspect.custom]() {
return `Left(${inspect(this.$value)})`;
}
// ----- Functor (Either a)
map() {
return this;
}
// ----- Applicative (Either a)
ap() {
return this;
}
// ----- Monad (Either a)
chain() {
return this;
}
join() {
return this;
}
// ----- Traversable (Either a)
sequence(of) {
return of(this);
}
traverse(of, fn) {
return of(this);
}
}
Right
class Right extends Either {
get isLeft() {
return false;
}
get isRight() {
return true;
}
static of(x) {
throw new Error(
'`of` called on class Right (value) instead of Either (type)',
);
}
[util.inspect.custom]() {
return `Right(${inspect(this.$value)})`;
}
// ----- Functor (Either a)
map(fn) {
return Either.of(fn(this.$value));
}
// ----- Applicative (Either a)
ap(f) {
return f.map(this.$value);
}
// ----- Monad (Either a)
chain(fn) {
return fn(this.$value);
}
join() {
return this.$value;
}
// ----- Traversable (Either a)
sequence(of) {
return this.traverse(of, identity);
}
traverse(of, fn) {
fn(this.$value).map(Either.of);
}
}
Identity
class Identity {
constructor(x) {
this.$value = x;
}
[util.inspect.custom]() {
return `Identity(${inspect(this.$value)})`;
}
// ----- Pointed Identity
static of(x) {
return new Identity(x);
}
// ----- Functor Identity
map(fn) {
return Identity.of(fn(this.$value));
}
// ----- Applicative Identity
ap(f) {
return f.map(this.$value);
}
// ----- Monad Identity
chain(fn) {
return this.map(fn).join();
}
join() {
return this.$value;
}
// ----- Traversable Identity
sequence(of) {
return this.traverse(of, identity);
}
traverse(of, fn) {
return fn(this.$value).map(Identity.of);
}
}
IO
class IO {
constructor(fn) {
this.unsafePerformIO = fn;
}
[util.inspect.custom]() {
return 'IO(?)';
}
// ----- Pointed IO
static of(x) {
return new IO(() => x);
}
// ----- Functor IO
map(fn) {
return new IO(compose(fn, this.unsafePerformIO));
}
// ----- Applicative IO
ap(f) {
return this.chain((fn) => f.map(fn));
}
// ----- Monad IO
chain(fn) {
return this.map(fn).join();
}
join() {
return new IO(() => this.unsafePerformIO().unsafePerformIO());
}
}
List
class List {
constructor(xs) {
this.$value = xs;
}
[util.inspect.custom]() {
return `List(${inspect(this.$value)})`;
}
concat(x) {
return new List(this.$value.concat(x));
}
// ----- Pointed List
static of(x) {
return new List([x]);
}
// ----- Functor List
map(fn) {
return new List(this.$value.map(fn));
}
// ----- Traversable List
sequence(of) {
return this.traverse(of, identity);
}
traverse(of, fn) {
return this.$value.reduce(
(f, a) =>
fn(a)
.map((b) => (bs) => bs.concat(b))
.ap(f),
of(new List([])),
);
}
}
Map
class Map {
constructor(x) {
this.$value = x;
}
[util.inspect.custom]() {
return `Map(${inspect(this.$value)})`;
}
insert(k, v) {
const singleton = {};
singleton[k] = v;
return Map.of(Object.assign({}, this.$value, singleton));
}
reduceWithKeys(fn, zero) {
return Object.keys(this.$value).reduce(
(acc, k) => fn(acc, this.$value[k], k),
zero,
);
}
// ----- Functor (Map a)
map(fn) {
return this.reduceWithKeys((m, v, k) => m.insert(k, fn(v)), new Map({}));
}
// ----- Traversable (Map a)
sequence(of) {
return this.traverse(of, identity);
}
traverse(of, fn) {
return this.reduceWithKeys(
(f, a, k) =>
fn(a)
.map((b) => (m) => m.insert(k, b))
.ap(f),
of(new Map({})),
);
}
}
Maybe
Note that Maybe two child classes could also be defined in a similar fashion as we did for Just and Nothing Either with. This is simply a different flavor.
class Maybe {
get isNothing() {
return this.$value === null || this.$value === undefined;
}
get isJust() {
return !this.isNothing;
}
constructor(x) {
this.$value = x;
}
[util.inspect.custom]() {
return this.isNothing ? 'Nothing' : `Just(${inspect(this.$value)})`;
}
// ----- Pointed Maybe
static of(x) {
return new Maybe(x);
}
// ----- Functor Maybe
map(fn) {
return this.isNothing ? this : Maybe.of(fn(this.$value));
}
// ----- Applicative Maybe
ap(f) {
return this.isNothing ? this : f.map(this.$value);
}
// ----- Monad Maybe
chain(fn) {
return this.map(fn).join();
}
join() {
return this.isNothing ? this : this.$value;
}
// ----- Traversable Maybe
sequence(of) {
return this.traverse(of, identity);
}
traverse(of, fn) {
return this.isNothing ? of(this) : fn(this.$value).map(Maybe.of);
}
}
Task
class Task {
fork: any;
constructor(fork: any) {
this.fork = fork;
}
[util.inspect.custom]() {
return 'Task(?)';
}
static rejected(x: any) {
return new Task((rej: any, _: any) => rej(x));
}
// ----- Pointed (Task a)
static of(x: any) {
return new Task((_: any, resolve: any) => resolve(x));
}
// ----- anytor (Task a)
map(fn: any) {
return new Task((rej: any, resolve: any) =>
this.fork(rej, compose(resolve, fn)),
);
}
// ----- Applicative (Task a)
ap(f: any) {
return this.chain((fn: any) => f.map(fn));
}
// ----- Monad (Task a)
chain(fn: any) {
return new Task((rej: any, resolve: any) =>
this.fork(rej, (x: any) => fn(x).fork(rej, resolve)),
);
}
join() {
return this.chain(identity);
}
}
Appendix C: Pointfree Utilities
In this appendix, you'll find pointfree versions of rather classic JavaScript functions described in the book. All of the following functions are seemingly available in exercises, as part of the global context. Keep in mind that these implementations may not be the fastest or the most efficient implementation out there; they solely serve an educational purpose. In order to find functions that are more production-ready, have a peek at ramda, lodash, or folktale.
Note that functions refer to the curry & compose functions defined in Appendix A.
add
// add :: Number -> Number -> Number
const add = curry((a, b) => a + b);
append
// append :: String -> String -> String
const append = flip(concat);
chain
// chain :: Monad m => (a -> m b) -> m a -> m b
const chain = curry((fn, m) => m.chain(fn));
concat
// concat :: String -> String -> String
const concat = curry((a, b) => a.concat(b));
eq
// eq :: Eq a => a -> a -> Boolean
const eq = curry((a, b) => a === b);
filter
// filter :: (a -> Boolean) -> [a] -> [a]
const filter = curry((fn, xs) => xs.filter(fn));
flip
// flip :: (a -> b -> c) -> b -> a -> c
const flip = curry((fn, a, b) => fn(b, a));
forEach
// forEach :: (a -> ()) -> [a] -> ()
const forEach = curry((fn, xs) => xs.forEach(fn));
head
// head :: [a] -> a
const head = (xs) => xs[0];
intercalate
// intercalate :: String -> [String] -> String
const intercalate = curry((str, xs) => xs.join(str));
join
// join :: Monad m => m (m a) -> m a
const join = (m) => m.join();
last
// last :: [a] -> a
const last = (xs) => xs[xs.length - 1];
map
// map :: Functor f => (a -> b) -> f a -> f b
const map = curry((fn, f) => f.map(fn));
match
// match :: RegExp -> String -> Boolean
const match = curry((re, str) => re.test(str));
prop
// prop :: String -> Object -> a
const prop = curry((p, obj) => obj[p]);
reduce
// reduce :: (b -> a -> b) -> b -> [a] -> b
const reduce = curry((fn, zero, xs) => xs.reduce(fn, zero));
replace
// replace :: RegExp -> String -> String -> String
const replace = curry((re, rpl, str) => str.replace(re, rpl));
reverse
// reverse :: [a] -> [a]
const reverse = (x: any) =>
Array.isArray(x) ? x.reverse() : x.split('').reverse().join('');
safeHead
// safeHead :: [a] -> Maybe a
const safeHead = compose(Maybe.of, head);
safeLast
// safeLast :: [a] -> Maybe a
const safeLast = compose(Maybe.of, last);
safeProp
// safeProp :: String -> Object -> Maybe a
const safeProp = curry((p, obj) => compose(Maybe.of, prop(p))(obj));
sequence
// sequence :: (Applicative f, Traversable t) => (a -> f a) -> t (f a) -> f (t a)
const sequence = curry((of, f) => f.sequence(of));
sortBy
// sortBy :: Ord b => (a -> b) -> [a] -> [a]
const sortBy = curry((fn, xs) =>
xs.sort((a, b) => {
if (fn(a) === fn(b)) {
return 0;
}
return fn(a) > fn(b) ? 1 : -1;
}),
);
split
// split :: String -> String -> [String]
const split = curry((sep, str) => str.split(sep));
take
// take :: Number -> [a] -> [a]
const take = curry((n, xs) => xs.slice(0, n));
toLowerCase
// toLowerCase :: String -> String
const toLowerCase = (s) => s.toLowerCase();
toString
// toString :: a -> String
const toString = String;
toUpperCase
// toUpperCase :: String -> String
const toUpperCase = (s) => s.toUpperCase();
traverse
// traverse :: (Applicative f, Traversable t) => (a -> f a) -> (a -> f b) -> t a -> f (t b)
const traverse = curry((of, fn, f) => f.traverse(of, fn));
unsafePerformIO
// unsafePerformIO :: IO a -> a
const unsafePerformIO = (io) => io.unsafePerformIO();