npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

facemesh-no-tfhub-dev

v0.0.2

Published

Pretrained facemesh model

Downloads

1

Readme

MediaPipe Facemesh

MediaPipe Facemesh is a lightweight machine learning pipeline predicting 486 3D facial landmarks to infer the approximate surface geometry of a human face (paper).

More background information about the model, as well as its performance characteristics on different datasets, can be found here: https://drive.google.com/file/d/1VFC_wIpw4O7xBOiTgUldl79d9LA-LsnA/view

The model is designed for front-facing cameras on mobile devices, where faces in view tend to occupy a relatively large fraction of the canvas. MediaPipe Facemesh may struggle to identify far-away faces.

Check out our demo, which uses the model to detect facial landmarks in a live video stream.

This model is also available as part of MediaPipe, a framework for building multimodal applied ML pipelines.

Installation

Using yarn:

$ yarn add @tensorflow-models/facemesh

Using npm:

$ npm install @tensorflow-models/facemesh

Note that this package specifies @tensorflow/tfjs-core and @tensorflow/tfjs-converter as peer dependencies, so they will also need to be installed.

Usage

To import in npm:

const facemesh = require('@tensorflow-models/facemesh');

or as a standalone script tag:

<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-core"></script>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-converter"></script>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/facemesh"></script>

Then:


async function main() {
  // Load the MediaPipe facemesh model.
  const model = await facemesh.load();

  // Pass in a video stream (or an image, canvas, or 3D tensor) to obtain an
  // array of detected faces from the MediaPipe graph.
  const predictions = await model.estimateFaces(document.querySelector("video"));

  if (predictions.length > 0) {
    /*
    `predictions` is an array of objects describing each detected face, for example:

    [
      {
        faceInViewConfidence: 1, // The probability of a face being present.
        boundingBox: { // The bounding box surrounding the face.
          topLeft: [232.28, 145.26],
          bottomRight: [449.75, 308.36],
        },
        mesh: [ // The 3D coordinates of each facial landmark.
          [92.07, 119.49, -17.54],
          [91.97, 102.52, -30.54],
          ...
        ],
        scaledMesh: [ // The 3D coordinates of each facial landmark, normalized.
          [322.32, 297.58, -17.54],
          [322.18, 263.95, -30.54]
        ],
        annotations: { // Semantic groupings of the `scaledMesh` coordinates.
          silhouette: [
            [326.19, 124.72, -3.82],
            [351.06, 126.30, -3.00],
            ...
          ],
          ...
        }
      }
    ]
    */

    for (let i = 0; i < predictions.length; i++) {
      const keypoints = predictions[i].scaledMesh;

      // Log facial keypoints.
      for (let i = 0; i < keypoints.length; i++) {
        const [x, y, z] = keypoints[i];

        console.log(`Keypoint ${i}: [${x}, ${y}, ${z}]`);
      }
    }
  }
}

main();

Parameters for facemesh.load()

facemesh.load() takes a configuration object with the following properties:

  • maxContinuousChecks - How many frames to go without running the bounding box detector. Only relevant if maxFaces > 1. Defaults to 5.

  • detectionConfidence - Threshold for discarding a prediction. Defaults to 0.9.

  • maxFaces - The maximum number of faces detected in the input. Should be set to the minimum number for performance. Defaults to 10.

  • iouThreshold - A float representing the threshold for deciding whether boxes overlap too much in non-maximum suppression. Must be between [0, 1]. Defaults to 0.3.

  • scoreThreshold - A threshold for deciding when to remove boxes based on score in non-maximum suppression. Defaults to 0.75.

Parameters for model.estimateFace()

  • input - The image to classify. Can be a tensor, DOM element image, video, or canvas.

  • returnTensors - (defaults to false) Whether to return tensors as opposed to values.

  • flipHorizontal - Whether to flip/mirror the facial keypoints horizontally. Should be true for videos that are flipped by default (e.g. webcams).

Keypoints

Here is map of the keypoints: