npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

ezfft

v1.1.2

Published

An easy way to get the FFT from a signal

Downloads

44

Readme

ezFFT - Node JS

Easy as fun

npm

CI

let fft = require("ezfft").fft;
let ifft = require("ezfft").ifft;
// import { fft, ifft } from "ezfft"; // Or import on ES5+

...

let data = fft(signal, fs);    // OMG ITS EZ AS F*
console.log(data.frequency.amplitude);  // Amplitude axis
console.log(data.frequency.phase);      // Phase axis
console.log(data.frequency.frequency);  // Frequency axis

Whereas data has the following properties.

data = {
    // Time domain data
    time: {
        real: [],   // Real portion
        imag: [],   // Imaginary portion
        time: []        // Time axis
    },
    // Frequency domain data
    frequency:{
        real: [],	// FFT real portion
        imag: [],	// FFT imaginary portion
        amplitude: [],  // Amplitude module
        phase: [],      // Phase [rad]
        frequency: []   // Frequency axis [Hz]
    },
    fs: fs,             // Sample rate in Hz
    samplingTime: st    // Sampling time in seconds
}

Usage

const fft = require('ezfft').fft;
const ifft = require('ezfft').ifft;

const signal = [];    // My awesome signal
const fs = 1000;      // My awesome sample rate

const f = 20;         // My signal's awesome frequency
for (let t = 0; t < 1; t += 1/fs) {
    signal.push(3*Math.sin(2*Math.PI*f*t));   // Let's make some sin ;-) (oh yeah go with it)
}

let data = fft(signal, fs);    // Returns the whole signal with frequency and time domain axis
data = ifft(data.frequency.amplitude, data.frequency.frequency); // Get the time from frequency domain

HELL YEAH! So easy. If you want an easy way to plot your data in the browser, go to the bonus at the end of this readme.

Install

npm i ezfft

FFT

  • fft (signal, fs, imag = [], ignoreFftAmplitudesLowerThan = 1e-3)
  • Input
    • signal: Time signal [Array]
    • fs: Sample frequency (Hz) [Array]
    • [Optional] imag: Imaginary portion of the signal (if any) [Array]
    • [Optional] ignoreFftAmplitudesLowerThan: Threshold to make fft value equals to zero [Value]
  • Output
    • data: Data object [Object]

IFFT

  • ifft(amplitude, frequency, phase = [], fftReal = [], fftImag = [], ignoreImagAmplitudesLowerThan = 1e-3)
  • Input
    • amplitude: Amplitude axis [Array]
    • frequency: Frequency axis (Hz) [Array]
    • [Optional] phase: Phase axis (if any) [Array]
    • [Optional] fftReal: Real portion of FFT (overrides the parameters amplitude and phase) [Array]
    • [Optional] fftImag: Imaginary portion of FFT (overrides the parameters amplitude and phase) [Array]
    • [Optional] ignoreImagAmplitudesLowerThan: Threshold to make imag value equals to zero [Value]
  • Output
    • data: Data object [Object]

[BONUS] Plot your data with express and socket.io in 3 steps!

Install express

npm install express

Install socket.io

npm install socket.io

Create a index.html. You can change the your graph size below.

<html>

<head>
    <title>Data display</title>
    <script src="https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.8.0/Chart.bundle.js"></script>
    <script src="https://cdnjs.cloudflare.com/ajax/libs/socket.io/2.3.0/socket.io.dev.js"></script>
</head>

<body>
    <!-- Change the size below -->
    <canvas id="time" width="600" height="400"></canvas>   
    <canvas id="fft" width="600" height="400"></canvas>
    <script>

        let ctxTime = document.getElementById('time').getContext('2d');
        let time = new Chart(ctxTime, {
            type: 'line',
            data: {
                label: "Time (s)",
                labels: [1, 2, 3, 4],
                datasets: [{
                    label: "Signal (Unit)",
                    fill: false,
                    borderColor: 'rgba(255, 99, 132, 1)',
                    data: [12, 9, 13, 13]
                }]
            },
            options: {
                animation: {
                    duration: 0
                },
                hover: {
                    animationDuration: 0
                },
                responsiveAnimationDuration: 0,
                responsive: false,
                title: {
                    display: true,
                    text: "Sensors"
                },
                elements: {
                    point: {
                        radius: 0
                    }
                }
            }
        });
        let ctxFFT = document.getElementById('fft').getContext('2d');
        let fft = new Chart(ctxFFT, {
            type: 'line',
            data: {
                label: "Frequency (Hz)",
                labels: [1, 2, 3, 4],
                datasets: [{
                    label: "Acceleration (mg)",
                    fill: false,
                    borderColor: 'rgba(255, 99, 132, 1)',
                    data: [12, 9, 13, 13]
                }]
            },
            options: {
                animation: {
                    duration: 0
                },
                hover: {
                    animationDuration: 0
                },
                responsiveAnimationDuration: 0,
                responsive: false,
                title: {
                    display: true,
                    text: "Sensor"
                },
                elements: {
                    point: {
                        radius: 0
                    }
                }
            }
        });

        let socket = io('http://localhost:8013');

        socket.on("data", function(data, _time){
            time.data.labels = data.time.time;
            time.data.datasets[0].data = data.time.real;
            fft.data.labels = data.frequency.frequency;
            fft.data.datasets[0].data = data.frequency.amplitude;
            time.update();
            fft.update();
        });
    </script>
</body>

</html>

Create a main.js file with the content below and run it with node main.js. And access by your browser the localhost:8013

// npm install ezfft
let fft = require("ezfft").fft;
// import { fft } from "ezfft";

// npm install express
var express = require('express');
var appExpress = express();
var http = require('http').Server(appExpress);

/*Express configuration*/
appExpress.use("/", express.static(__dirname + "/"));

appExpress.get('/', function (req, res) {
    res.sendFile(__dirname + '/index.html');    // Name of your local web page
});

http.listen(8013, function () {
    console.log('With your browser, access "localhost:8013"');
});

// npm install socket.io
var io = require('socket.io')(http);

/*Socket configuration*/
io.on('connection', function (socket) {
    
    console.log("LES'GO");

    setInterval(function () {
        const signal = [];        // Array with the Y axis (amplitude in time)
        const time = [];          // Array with the X axis (time)

        const data;
        
        const f = 60;             // Your signal frequency
        const fs = 1000;          // Your sample rate
        const samplingTime = 1;   // Period that the signal was sampled

        for (let t = 0; t < samplingTime; t += 1/fs){
            signal.push(180*Math.sin(2*Math.PI*f*t) + 20*Math.sin(2*Math.PI*2*f*t) + 2*Math.sin(2*Math.PI*3*f*t));  // The generated signal
            time.push(t);                  //Append time axis
        }

        data = fft(signal, fs);   // Get signal's FFT
        
        socket.emit("data", data);   // Send data to Browser

    }, 2000);       // Update rate in sec
});

LICENSE

It all is just a wrapper to Project Nayuki (MIT License). Thank you so much for doing this in many languages including JS. I did change some parts of the code, but the original one can be found below. The main logic is the same. https://www.nayuki.io/page/free-small-fft-in-multiple-languages

Free FFT and convolution (JavaScript)

Copyright (c) 2017 Project Nayuki. (MIT License) https://www.nayuki.io/page/free-small-fft-in-multiple-languages

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

  • The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
  • The Software is provided "as is", without warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall the authors or copyright holders be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise, arising from, out of or in connection with the Software or the use or other dealings in the Software.