evolve
v0.0.4
Published
library for evolving source code
Downloads
14
Readme
node-evolve
Programmatically evolve source code BETA
Summary
Evolve is a library designed to explore parameters, algorithms and solutions automatically, by introducing random changes in a program.
It works by mutating JavaScript ASTs, using random mutations over trees and nodes, constrained by a set of rules, to restrict mutations to specific changes and parts of your code.
Since there is absolutely no guarantee that your program will still work, or even "evaluate" after mutation, you should use a higher-level library to manage individuals, population, fitness and selection.
Examples
Please browse the examples for a comprehensive tour of features and possible use cases.
Self-replicating "bacteria"
$ coffee examples/medium/bacteria.coffee
Will run a minimalist demo program which can replicates itself (it just print a modified version of its own source code to the standard output). To keep the demo simple, it is constrained to mutate only one thing - its own mutation rate:
evolve = require('evolve')
mutation_rate = 0.001
foo = .20
evolve.mutable ->
foo = foo * 0.10
mutation_rate = Math.cos(0.001) + Math.sin(0.5)
mutation_rate = mutation_rate / foo
evolve.readFile
ratio: mutation_rate
file: process.argv[1]
debug: false
onComplete: (src) ->
console.log src
WARNING
node-evolve is still in development and won't solve all problems for you: no matter how powerful it might looks like, you still have to design your program - and your problem - carefully.
Installation
Since node-evolve is not released yet, you have to install it using:
$ npm install git://github.com/daizoru/node-evolve.git
Features
Built-in mutation rules
Various mutation are already available in node-evolve: random insert, replace, delete of AST nodes, numbers, strings..
Constrained syntax and semantics
node-evolve will try hard to avoid useless or bad mutations - your code will already have a hard time surviving its first eval() anyway!
It works thanks to AST constraints. These constraints prevent mutating this:
var x = 4 + 2 / y;
To this:
var 3 = * 4 + 2 + y /;
Because it would violate three constraints (assign to a number, lone '/' and '*' operators..)
But for instance, this mutation would be allowed:
var y = 2 / x / y + 4 ;
In the end, all these constraints make mutation more efficient, by avoiding running a "compilation" step or evaluation on obviously bad code. It saves time.
Customizable rules
You can input your own rules, if they can be applied to an AST node (or the root node of the whole tree).
Simple type checking
node-evolve check that incompatible references are not mixed.
For instance, if you define this context:
context = -> [ Math.PI, Math.cos ]
then this mutation can't happen with node-evolve:
var x = Math.PI * Math.cos;
But this one can:
var x = Math.PI * Math.cos(Math.PI);
On the other hand, this one is prohibited:
Math.PI = x * Math.cos(x);
Since variables and functions passed in context are read-only
List of supported mutations
Numerical values
Numerical values are subject to mutation, like random multiplication or addition.
Binary operator substitution
Operator of binary operations may be substituted by any operator of this list: + - * /
Binary operator switching
This mutation simply switch two terms of an operation, eg. 10.0 / 5.0 becomes 5.0 / 10.0.
EXPERIMENTAL - String mutation, levenshtyle.
String mutation is supported, and done using atomic operators like add, delete, move and substitution. However it is still experimental, and doesn't offer much control over which ASCII characters are allowed, forbidden, constants strings, collections of strings.. you have to implement this yourself for the moment (using Rules)
EXPERIMENTAL - Block copying, cutting & pasting
This mutation copy or cut a node of the AST tree to another place. It may replace a node or insert between two.
EXPERIMENTAL - Variable substitution
Any variable is subject to change and remplacement by another variable.
EXPERIMENTAL - Support for multiples iterations
It can apply more than one layer of mutation: For instance, one iteration might copy AST nodes to a buffer, and another may paste the content to overwrite or insert data.
Use this feature to create complex, combined mutations.
How-to
Use it in command line
$ evolve src [ratio=0.42] [debug]
Example :
$ evolve examples/evolvable.js ratio=0.10
mutable(function() {
a = x * 1;
b = y * 1;
z = "hello";
return c = 1.4881885522045195 * z;
});
Using the API
Defining a block of mutable code
evolve = require 'evolve'
class Foo
constructor: ->
foo: (x,y,z) =>
[a,b,c] = [0,0,0]
# define a block of evolvable code, algorithm, neural network..
evolve.mutable ->
# the evolved code can only mess with foo()'s variables
# if evolution goes wrong
a = x * 1
b = y * 1
c = z * 1
# you can add an "hidden" level of memory
f = 5
g = 42
# and maths!
b = Math.cos(f) + Math.cos(g * a)
c = a + 3
# outside the block, you can call your stuff as usual
@bar a, b, c
Dynamic mutation of the currently running program (CoffeeScript example)
{mutate} = require 'evolve'
evolve.mutate
obj: Foo.prototype
func: 'foo'
onComplete: ->
console.log "mutation of foo() completed."
f = new Foo()
f.foo()
Static mutation of a source string (JavaScript Example)
var evolve = require("evolve");
var old_src = "x1 = 0; x2 = 42; f1 = function() { return x2 * 10; }; x1 = f1();";
// clone a source, with some "dna" copy errors
evolve.clone({
// input source code (string)
"src" : old_src,
"tentatives": 1,
// on complete always return a source; In case of failure, the original is returned
"onComplete": function(src) { return console.log("finished: " + src); }
});
Static mutation of a source file (JavaScript example)
The input file can be in .js or in .coffee
// read a file, with some "dna" copy errors
evolve.readFile({
"file" : "examples/evolvable.js",
"onComplete": function(src) { return console.log(src); }
});
Customization of globals
Just pass a bunch of variables to be used in mutations. these variables must be returned by a function, for symbol name introspection to work
context = -> [
Math.cos
Math.sin
Math.random
Math.PI
]
# then call it
evolve.mutate context: context, .....
Customize the mutation rules
For the moment, please refer to the sources to see how rules work
rules =
# decorators are applied on each node, and expected to return either
# the current, new or modified node, or an undefined value (then it is ignored)
decorators:
multiply: (t, value) ->
if t is 'num' and Math.random() < 0.5 then [t, Math.random() * value]
Change log
0.0.0
License (BSD)
Copyright (c) 2012, Julian Bilcke <[email protected]>
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of Julian Bilcke.