npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

evo-tf

v1.1.2

Published

evo-tf allows for easy neuro-evolution in the browser using tensorflow.js This project is not 100% finished and has some areas I still need to touch up on. But you can expect it to be ready within the next couple days, possibly the 17th. There will also

Downloads

34

Readme

evo-tf

evo-tf allows for easy neuro-evolution in the browser using tensorflow.js This project is not 100% finished and has some areas I still need to touch up on. But you can expect it to be ready within the next couple days, possibly the 17th. There will also be some examples on how to use the library, I plan to implement it into Flappy Bird, Atari Breakout, Space Invaders and many more.

  • [X] basic mutation
    • [ ] advanced mutation
    • [ ] Q learning
    • [ ] examples
    • [ ] crossover
    • [ ] graphs of realtime results

CDN

You will need to include evo-tf as well as tensorflow.js

<script src="https://unpkg.com/evo-tf/net.js"></script>

<script src="https://cdnjs.cloudflare.com/ajax/libs/tensorflow/1.1.2/tf.min.js"></script>

Usage

const evoConfig = {
  inputs: 2,
  hidden:[{neurons:8,activation:'relu'}, {neurons:8, activation:'relu'}],
  output:{neurons:2, activation:'softmax'}
}

function getState(){
  let playerPosition = document.getElementById('player').position
  let opponentPosition = document.getElementById('opponent').position
  return [playerPosition, opponentPosition]
}

function makeMove(outputs){
  if(outputs[0]<outputs[1]){
    // Have the player do something
  }else{
    // Have the player do something else
  }

  // Check if the player is still alive
  let alive = true
  return alive
}

(async () => {
 await explore(100);
 await evolve(1000);
})();

evoConfig

evoConfig is a required object containing the attributes of all neural networks that evo-tf will create. Inputs will simply be the number of inputs you will give the network. Hidden will be an array of objects which each contain the amount of neurons that layer will be given along with the activation function used. A list of the available activation functions and an explanation as to which ones you should use can be found here. Output is an object defining the output layer. Just like the hidden layers, you will define the number of neurons as well as the activation function.

getState()

getState() needs to be defined in order to let the agents get their current environment state (inputs). In the example above getState() gets the players position off of the DOM as well as the opponents position and then returns them in an array. These values should be numbers between 0 and 1 and need to be returned in an array. In order to get your inputs in between 0 and 1 it is common practice to divide all inputs by the highest possible value for that input. The amount of values returned from this function should match the number of inputs specified in evoConfig. You will never have to call getState(), it will be automatically called when exploring and evolving.

makeMove(prediction)

makeMove() needs to be defined in order to execute upon the predicted move. In the example above there are 2 outputs, therefore the length of the outputs array given to makeMove will be 2. This is used for classification. In our example if outputs[0] is greater than outputs[1] then make a move such as turn left, if outputs[1] is greater than outputs[0] then make a move such as turn right. If you have more than 2 outputs, the same principles apply, the highest value in the array decides the move. You will never have to call makeMove(), this will automatically be called when exploring and evolving. Once you have made an action based on the outputs return a boolean with true if the player is still alive and flase if the player has died.

explore(epochs)

Explore will create neural networks with the structure you defined in evoConfig and give the network random weights. This random network will then get the state (inputs) using getState() and then make a decision upon that state (outputs) and make a move using makeMove(). This will be repeated for the amount of epochs you specify. The purpose of explore is to find a network that does slightly better than the others. The network with the highest score will then be used as a base model to provide a template for the networks being created within evolve() to mutate off of. Every time a network gets a new highscore it replace the base model currently being used.

evolve(epochs)

Evolve make a clone of the network that has done the best so far (previously referred to as the base model) and mutate the weights in order to make a slightly different network. This network will then take in the current state (inputs) using the getState() function and make a move using makeMove() based on the prediction from the current state. The goal is to get a network that performs better than the base model and replace the base model and constantly evolve that base model. This repeat for the specified amount of epochs. If no amount of epochs is specified it will run indefinitely.

Activation Functions

The available activation functions are 'elu', 'hardSigmoid', 'linear', 'relu', 'relu6', 'selu', 'sigmoid', 'softmax', 'softplus', 'softsign' and 'tanh'. For most situations it is recommended that you use 'relu' for the hidden layers and for the output if you are solving a classification problem (turn left || turn right) (red || blue) use the 'softmax' activation function. For a more detailed explanation on which activation functions you should use watch Saraj Raval's video Which Activation Function Should I Use?.

License

MIT