esper
v0.12.1
Published
A low-level ES6 WebGL rendering framework
Downloads
25
Readme
esper.js
A low-level ES6 WebGL rendering framework.
Table of Contents
Installation
npm install esper
or
bower install esper
Documentation
Example
let shader;
let viewport;
let renderable;
let texture;
function render() {
// setup
viewport.push();
shader.use();
shader.setUniform('uLightPosition', light);
shader.setUniform('uModelMatrix', model);
shader.setUniform('uViewMatrix', view);
shader.setUniform('uProjectionMatrix', projection);
shader.setUniform('uTextureSampler', 0);
texture.bind(0);
// draw
renderable.draw();
// teardown
texture.unbind();
viewport.pop();
// queue next frame
requestAnimationFrame(render);
}
// create webgl context
try {
gl = esper.WebGLContext.get("glcanvas");
} catch(err) {
console.err(err.message);
}
// only continue if WebGL is available
if (gl) {
// viewport
viewport = new esper.Viewport({
width: window.innerWidth,
height: window.innerHeight
});
// shader
shader = new esper.Shader({
vert: phong.vert,
frag: phong.frag
});
// texture
texture = new esper.ColorTexture2D({
src: [
255, 0, 0, 255,
0, 255, 0, 255,
0, 0, 255, 255,
255, 255, 0, 255
],
width: 2,
height: 2,
wrap: 'CLAMP_TO_EDGE',
filter: 'NEAREST'
})
// renderable
renderable = new esper.Renderable({
vertices: {
0: cube.positions,
1: cube.normals,
2: cube.uvs
},
indices: cube.indices
});
// enable depth testing
gl.enable(gl.DEPTH_TEST);
// start render loop
render();
}
Usage
WebGLContexts
In order to access the WebGL API you first need a canvas element from which a WebGL rendering context can be created. The esper.WebGLContext
namespace streamlines the typical process of instantiating a context and provides facilities for handling multiple contexts within a single application. The object returned is a native WebGLRenderingContext object.
// Get WebGL context and load all available extensions.
let gl;
try {
gl = esper.WebGLContext.get('canvas-id');
} catch(err) {
console.error(err.message);
}
Options can be provided via the second parameter.
let gl;
try {
gl = esper.WebGLContext.get(canvasDOMElement, {
antialias: false
depth: false
});
} catch(err) {
console.error(err.message);
}
Once a context has been created, it is bound internally and can be accessed throughout the application by calling esper.WebGLContext.get
. It is important to note that all esper
classes will use the context bound during their instantiation. This is only important if you are intending to use multiple WebGL contexts. In most cases this is discouraged as WebGL constructs cannot be shared between contexts and result in redundant buffers and textures.
let gl = esper.WebGLContext.get();
The esper.WebGLContext.bind
method can be used to manually bind a context. Once again, if only one context is ever used, this is unnecessary as the context is bound upon creation.
esper.WebGLContext.bind('canvas-id');
esper.WebGLContext.bind(canvasDOMElement);
During the creation of the context, esper will automatically attempt to load all known WebGL extensions. To check whether or not a specific extension has been successfully loaded use esper.WebGLContext.checkExtension
.
// Check if the bound WebGL context supports depth textures.
if (esper.WebGLContext.checkExtension('WEBGL_depth_texture')) {
console.log('Depth textures are supported');
}
All supported or unsupported extensions can also be queried.
esper.WebGLContext.supportedExtensions().forEach( extension => {
console.log(extensions + ' is supported.');
});
esper.WebGLContext.unsupportedExtensions().forEach( extension => {
console.log(extensions + ' is not supported.');
});
Contexts can be removed via the esper.WebGLContext.remove
method.
esper.WebGLContext.remove('canvas-id');
Shaders
Shaders are programs that execute on the GPU and are essential to 3D programming. WebGL currently supports two types of shaders: vertex and fragment. Vertex shaders execute on each vertex of the primitive being rendered while fragment shaders execute for each rasterized fragment. The esper.Shader
constructor accepts both URLs to source files and source code as strings.
// Create shader object and using source URLs (also supports source code strings).
let shader = new esper.Shader({
vert: 'shaders/phong.vert',
frag: 'shaders/phong.frag'
}, (err, shader) => {
if (err) {
console.error(err);
return;
}
// Shader completion callback.
console.log('Shader sources loaded and program instantiated');
});
Multiple source arguments can be provided as arrays and are concatenated together in the respective order. Common code can also be shared between shader types and is appended at the top of the source.
// Create shader object and using source URLs (also supports source code strings).
let shader = new esper.Shader({
common: 'uniform highp float uTime;',
vert:
`
shaders/noise.vert
attribute highp vec3 aVertexPosition;
void main() {
gl_Position = vec4(aVertexPosition * noise(uTime), 1.0);
vPosition = aVertexPosition.xyz;
}
`,
frag:
`
void main() {
gl_FragColor = vec4(1*uTime, 1*uTime, 1*uTime, 1.0);
}
`
}, (err, shader) => {
if (err) {
console.error(err);
return;
}
console.log('Shader sources loaded and program instantiated');
});
During shader initialization the shader source code is parsed and analyzed. All vertex attribute locations are bound in the order in which they are declared and all uniform types and locations are retrieved and stored based upon name. This is used to greatly simplify the process of uploading uniforms to the GPU.
When uploading uniforms to the GPU, arguments are automatically casted (within reason) into the appropriate format.
// Upload uniforms to the GPU
shader.setUniform('uProjectionMatrix', projectionMatrixArray);
shader.setUniform('uAlpha', 0.25);
shader.setUniform('uHasTexture', false); // booleans are converted to float
Viewports
An esper.Viewport
defines a rendering resolution within the canvas element. By default, the viewport will be set to the current dimensions of the canvas element.
// Create the viewport.
let viewport = new esper.Viewport({
width: window.innerWidth,
height: window.innerHeight
});
// Have the viewport always fit to the window.
window.addEventListener('resize', () => {
viewport.resize(window.innerWidth, window.innerHeight);
});
// Push the viewport onto the stack at its current size.
viewport.push();
// Push viewport overrides onto the stack, this will give a 10px border.
viewport.push(10, 10, canvas.height - 20, canvas.width - 20);
// Pop the override off the stack.
viewport.pop();
Using the resize
method will resize the underlying canvas element along with the implicit dimensions of the viewport.
// Resize the viewport. This resizes the underlying canvas.
viewport.resize(460, 460);
Modifying the viewport is the recommended way to mimic multiple rendering contexts as it requires no duplication of WebGL constructs.
let viewport = new esper.Viewport({
width: 1000,
height: 500
});
viewport.push(0, 0, 500, 500);
// ... render to left half of canvas
viewport.pop();
viewport.push(500, 0, 500, 500);
// .. render to right half of canvas
viewport.pop();
VertexBuffers
An esper.VertexBuffer
is used to store vertex attribute information. Common attributes include positions, normals, texture coordinates, skeletal animation joint ids and skinning weights. Attributes can be stored in separate isolated buffers or together in a single buffer either accessed at byte offsets or interleaved with each other to take advantage of cache locality (recommended).
// Create separate vertex buffers for each attributes.
let positionBuffer = new esper.VertexBuffer(positions, {
0: {
size: 3,
type: 'FLOAT'
}
});
let normalBuffer = new esper.VertexBuffer(normals, {
1: {
size: 3,
type: 'FLOAT'
}
});
let uvBuffer = new esper.VertexBuffer(uvs, {
2: {
size: 2,
type: 'FLOAT'
}
});
// Create interleaved buffer from an existing Array or Float32Array.
let vertexBuffer = new esper.VertexBuffer(array, {
0: {
size: 3,
type: 'FLOAT',
byteOffset: 0
},
1: {
size: 3,
type: 'FLOAT',
byteOffset: 12
},
2: {
size: 2,
type: 'FLOAT',
byteOffset: 26
}
});
Drawing with esper.VertexBuffers
is easy, simply bind it, and draw.
// Bind vertex buffer.
vertexBuffer.bind();
// Draw triangles.
vertexBuffer.draw({
mode: TRIANGLES
});
// Draw points from an index offset.
vertexBuffer.draw({
mode: POINTS,
indexOffset: 100
});
// Draw n lines.
vertexBuffer.draw({
mode: LINES,
count: n * 2
});
// Unbind
vertexBuffer.unbind();
VertexPackages
Interleaving vertex attributes and manually defining the attribute pointers is tedious and prone to frustrating user error. The esper.VertexPackage
class simplifies this and coalesces multiple arrays into a single interleaved Float32Array while calculating the correct attribute pointers.
// Create interleaved vertex buffers using vertex packages.
let vertexPackage = new esper.VertexPackage({
0: positions,
1: normals,
2: uvs
});
An instantiated esper.VertexPackage
can then be passed to a esper.VertexBuffer
constructor for simple instantiation.
let vertexBuffer = new esper.VertexBuffer(vertexPackage.buffer, vertexPackage.pointers);
IndexBuffers
Due to the nature of tessellation, single vertices may referenced by multiple geometric primitives. Solely using vertex buffers can result in a large amount of redundancy as these vertices may be repeated within the buffer. For example a simple cube is composed of 12 triangles, requiring 36 vertices if only using a vertex buffer. With flat shading this cube be represented with only 8 vertices when using an index buffer. The esper.IndexBuffer
class allows the user to specify the ordering of vertex attributes inside a vertex buffer, which allows re-use of vertices and smaller, more efficient buffers.
// Create index buffer from an array of indices.
let indexBuffer = new esper.IndexBuffer(indices);
Rendering using an esper.IndexBuffer
is easy as well, simply bind any referenced vertex buffers, then bind the index buffer and draw.
// Bind vertex buffer.
vertexBuffer.bind();
// Draw triangles.
indexBuffer.draw({
mode: TRIANGLES
});
// Draw n lines.
indexBuffer.draw({
mode: LINES,
count: n * 2
});
// Draw points from an offset.
indexBuffer.draw({
mode: POINTS,
byteOffset: 100 * (4 * 3),
count: n - (100)
});
vertexBuffer.unbind();
Renderables
While working at the level of esper.VertexBuffer
and esper.IndexBuffer
can give you low level control, it is often tedious and unnecessary. The esper.Renderable
class encapsulates this behavior with a simplified interface while still retaining the same low level control.
// Create a renderable from vertex and index arrays.
let renderable = new esper.Renderable({
vertices: {
0: positions,
1: normals,
2: uvs
},
indices: indices
});
// Create a renderable without an index buffer
let renderable = new esper.Renderable({
vertices: {
0: positions,
1: normals,
2: uvs
}
});
// Draw the renderable.
renderable.draw({
mode: 'LINES', // render lines instead of triangles
byteOffset: 100 * (4 * 3) * 2, // exclude the first 100 lines
count: 500 * 2 // only render 500 lines
});
Textures
Textures can be used to store and sample many different types of information. Typically a texture stores color values but can also be used to store depth values or any other types of encoded information. An esper.Texture2D
is a low level construct for interfacing directly with the WebGL texture API.
// Create texture from image URL.
let texture = new esper.Texture2D({
src: new Uint8Array([
255, 0, 0, 255,
0, 255, 0, 255,
0, 0, 255, 255,
0, 255, 0, 255,
]),
width: 2,
height: 2,
format: 'RGBA',
type: 'UNSIGNED_BYTE',
wrapS: 'REPEAT',
wrapT: 'REPEAT',
minFlter: 'LINEAR',
magFilter: 'LINEAR',
invertY: false,
premultiplyAlpha: false,
mipMap: false
});
Using textures is easy, simply bind the texture, providing the texture unit number, then set the texture sampler unit in the shader.
// Bind to texture unit 0
texture.bind(0);
// Bind texture sampler to the same unit.
shader.setUniform('uTextureSampler', 0);
// .. draw using texture
// Unbind from texture unit 0.
texture.unbind();
ColorTextures
Color textures are the most common type of texture and are used to store RGB or RGBA values. An esper.ColorTexture2D
can be created from existing HTMLImageElements, URLs containing HTMLImageElement supported image formats, ArrayBufferViews, or null data.
// Create texture from image URL.
let texture = new esper.ColorTexture2D({
src: 'images/checkerboard.png'
}, (err, texture) => {
if (err) {
console.error(err);
return;
}
console.log('Texture2D image successfully created.');
});
// Create empty color texture buffer to be written to.
let colorTexture = new esper.Texture2D({
height: 256,
width: 256
});
WebGL 1.0 requires that any texture with mipmapping enabled or repeating wrap modes (REPEAT
or MIRRORED_REPEAT
), must have dimensions that are powers of two. esper.ColorTexture2D
will automatically resize any non power of two textures to the next highest power of two. Ex. 129 becomes 256, 15 becomes 16, etc.
DepthTextures
Depth textures can be used to store depth values and are commonly used in conjunction with RenderTargets. The esper.DepthTexture2D
class is only available if the WEBGL_depth_texture
extension is supported.
// Create a depth texture. (Only works if depth texture extension is supported).
let depthTexture = new esper.DepthTexture2D({
width: 1024,
height: 1024
});
TextureCubeMaps
Cubemap textures are a specific type of texture typically used for skyboxes and reflections. An esper.TextureCubeMap
can be created from existing HTMLImageElements, URLs containing HTMLImageElement supported image formats, ArrayBufferViews, or null data. The faces of the cube are specified during instantiation.
// Create cube map from image URLs.
let cubeMapTexture = new esper.TextureCubeMap({
faces: {
'+x': 'images/sky/posx.png',
'-x': 'images/sky/negx.png',
'+y': 'images/sky/posy.png',
'-y': 'images/sky/negy.png',
'+z': 'images/sky/posz.png',
'-z': 'images/sky/negz.png'
}
}, (err, texture) => {
if (err) {
console.error(err);
return;
}
console.log('TextureCubeMap successfully created.');
});
// Create empty cube map to be written to.
let cubeMapTexture = new TextureCubeMap({
width: 512,
height: 512
});
Using cubemap textures is easy, simply bind the texture, providing the texture unit number, then set the texture sampler unit in the shader.
// Bind to texture unit 0.
cubeMapTexture.bind(0);
// Bind texture sampler to the same unit.
shader.setUniform('uTextureSampler', 0);
// .. draw using cubemap texture
// Unbind from texture unit 0.
cubeMapTexture.unbind();
RenderTargets
When compositing more complex scenes, intermediate render states may need to be written to an additional buffer. The esper.RenderTarget
class provides an interface to allow you to draw to textures.
// Create a shadow map texture.
let shadowTexture = new esper.ColorTexture2D({
width: 512,
height: 512
});
// Create a depth texture for the render target.
let depthTexture = new esper.DepthTexture2D({
width: 512,
height: 512
});
// Create a render target and attach the textures.
let renderTarget = new esper.RenderTarget();
renderTarget.setColorTarget(shadowTexture, 0); // Bind to color attachment 0
renderTarget.setDepthTarget(depthTexture);
Drawing to the texture unit is simple:
// Bind the render target.
renderTarget.bind();
// Clear the bound color and depth textures.
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
// .. render to the render target
// Unbind the the render target.
renderTarget.unbind();
// Now use the bound textures as you would normally.
// Bind shadow map to texture unit 0.
shadowTexture.bind(0);
// Bind texture sampler to the same unit.
shader.setUniform('uShadowTextureSampler', 0);
// ... render using the texture
// Unbind from texture unit 0.
shadowTexture.unbind();