npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

ergonomic-ws

v8.8.1

Published

Simple to use, blazing fast and thoroughly tested websocket client and server for Node.js

Downloads

2

Readme

ws: a Node.js WebSocket library

Version npm CI Coverage Status

A shameless ripoff from the original ws library with some ergonomics around incomming connection filtrations plus embeded typescript defenitions.

ws is a simple to use, blazing fast, and thoroughly tested WebSocket client and server implementation.

Passes the quite extensive Autobahn test suite: server, client.

Note: This module does not work in the browser. The client in the docs is a reference to a back end with the role of a client in the WebSocket communication. Browser clients must use the native WebSocket object. To make the same code work seamlessly on Node.js and the browser, you can use one of the many wrappers available on npm, like isomorphic-ws.

Table of Contents

Protocol support

  • HyBi drafts 07-12 (Use the option protocolVersion: 8)
  • HyBi drafts 13-17 (Current default, alternatively option protocolVersion: 13)

Installing

npm install ws

Opt-in for performance

There are 2 optional modules that can be installed along side with the ws module. These modules are binary addons which improve certain operations. Prebuilt binaries are available for the most popular platforms so you don't necessarily need to have a C++ compiler installed on your machine.

  • npm install --save-optional bufferutil: Allows to efficiently perform operations such as masking and unmasking the data payload of the WebSocket frames.
  • npm install --save-optional utf-8-validate: Allows to efficiently check if a message contains valid UTF-8.

To not even try to require and use these modules, use the WS_NO_BUFFER_UTIL and WS_NO_UTF_8_VALIDATE environment variables. These might be useful to enhance security in systems where a user can put a package in the package search path of an application of another user, due to how the Node.js resolver algorithm works.

API docs

See /doc/ws.md for Node.js-like documentation of ws classes and utility functions.

WebSocket compression

ws supports the permessage-deflate extension which enables the client and server to negotiate a compression algorithm and its parameters, and then selectively apply it to the data payloads of each WebSocket message.

The extension is disabled by default on the server and enabled by default on the client. It adds a significant overhead in terms of performance and memory consumption so we suggest to enable it only if it is really needed.

Note that Node.js has a variety of issues with high-performance compression, where increased concurrency, especially on Linux, can lead to catastrophic memory fragmentation and slow performance. If you intend to use permessage-deflate in production, it is worthwhile to set up a test representative of your workload and ensure Node.js/zlib will handle it with acceptable performance and memory usage.

Tuning of permessage-deflate can be done via the options defined below. You can also use zlibDeflateOptions and zlibInflateOptions, which is passed directly into the creation of raw deflate/inflate streams.

See the docs for more options.

import WebSocket, { WebSocketServer } from 'ws';

const wss = new WebSocketServer({
  port: 8080,
  perMessageDeflate: {
    zlibDeflateOptions: {
      // See zlib defaults.
      chunkSize: 1024,
      memLevel: 7,
      level: 3
    },
    zlibInflateOptions: {
      chunkSize: 10 * 1024
    },
    // Other options settable:
    clientNoContextTakeover: true, // Defaults to negotiated value.
    serverNoContextTakeover: true, // Defaults to negotiated value.
    serverMaxWindowBits: 10, // Defaults to negotiated value.
    // Below options specified as default values.
    concurrencyLimit: 10, // Limits zlib concurrency for perf.
    threshold: 1024 // Size (in bytes) below which messages
    // should not be compressed if context takeover is disabled.
  }
});

The client will only use the extension if it is supported and enabled on the server. To always disable the extension on the client set the perMessageDeflate option to false.

import WebSocket from 'ws';

const ws = new WebSocket('ws://www.host.com/path', {
  perMessageDeflate: false
});

Usage examples

Sending and receiving text data

import WebSocket from 'ws';

const ws = new WebSocket('ws://www.host.com/path');

ws.on('open', function open() {
  ws.send('something');
});

ws.on('message', function message(data) {
  console.log('received: %s', data);
});

Sending binary data

import WebSocket from 'ws';

const ws = new WebSocket('ws://www.host.com/path');

ws.on('open', function open() {
  const array = new Float32Array(5);

  for (var i = 0; i < array.length; ++i) {
    array[i] = i / 2;
  }

  ws.send(array);
});

Simple server

import { WebSocketServer } from 'ws';

const wss = new WebSocketServer({ port: 8080 });

wss.on('connection', function connection(ws) {
  ws.on('message', function message(data) {
    console.log('received: %s', data);
  });

  ws.send('something');
});

External HTTP/S server

import { createServer } from 'https';
import { readFileSync } from 'fs';
import { WebSocketServer } from 'ws';

const server = createServer({
  cert: readFileSync('/path/to/cert.pem'),
  key: readFileSync('/path/to/key.pem')
});
const wss = new WebSocketServer({ server });

wss.on('connection', function connection(ws) {
  ws.on('message', function message(data) {
    console.log('received: %s', data);
  });

  ws.send('something');
});

server.listen(8080);

Multiple servers sharing a single HTTP/S server

import { createServer } from 'http';
import { parse } from 'url';
import { WebSocketServer } from 'ws';

const server = createServer();
const wss1 = new WebSocketServer({ noServer: true });
const wss2 = new WebSocketServer({ noServer: true });

wss1.on('connection', function connection(ws) {
  // ...
});

wss2.on('connection', function connection(ws) {
  // ...
});

server.on('upgrade', function upgrade(request, socket, head) {
  const { pathname } = parse(request.url);

  if (pathname === '/foo') {
    wss1.handleUpgrade(request, socket, head, function done(ws) {
      wss1.emit('connection', ws, request);
    });
  } else if (pathname === '/bar') {
    wss2.handleUpgrade(request, socket, head, function done(ws) {
      wss2.emit('connection', ws, request);
    });
  } else {
    socket.destroy();
  }
});

server.listen(8080);

Client authentication

import { createServer } from 'http';
import { WebSocketServer } from 'ws';

const server = createServer();
const wss = new WebSocketServer({ noServer: true });

wss.on('connection', function connection(ws, request, client) {
  ws.on('message', function message(data) {
    console.log(`Received message ${data} from user ${client}`);
  });
});

server.on('upgrade', function upgrade(request, socket, head) {
  // This function is not defined on purpose. Implement it with your own logic.
  authenticate(request, function next(err, client) {
    if (err || !client) {
      socket.write('HTTP/1.1 401 Unauthorized\r\n\r\n');
      socket.destroy();
      return;
    }

    wss.handleUpgrade(request, socket, head, function done(ws) {
      wss.emit('connection', ws, request, client);
    });
  });
});

server.listen(8080);

Also see the provided example using express-session.

Server broadcast

A client WebSocket broadcasting to all connected WebSocket clients, including itself.

import WebSocket, { WebSocketServer } from 'ws';

const wss = new WebSocketServer({ port: 8080 });

wss.on('connection', function connection(ws) {
  ws.on('message', function message(data, isBinary) {
    wss.clients.forEach(function each(client) {
      if (client.readyState === WebSocket.OPEN) {
        client.send(data, { binary: isBinary });
      }
    });
  });
});

A client WebSocket broadcasting to every other connected WebSocket clients, excluding itself.

import WebSocket, { WebSocketServer } from 'ws';

const wss = new WebSocketServer({ port: 8080 });

wss.on('connection', function connection(ws) {
  ws.on('message', function message(data, isBinary) {
    wss.clients.forEach(function each(client) {
      if (client !== ws && client.readyState === WebSocket.OPEN) {
        client.send(data, { binary: isBinary });
      }
    });
  });
});

Round-trip time

import WebSocket from 'ws';

const ws = new WebSocket('wss://websocket-echo.com/');

ws.on('open', function open() {
  console.log('connected');
  ws.send(Date.now());
});

ws.on('close', function close() {
  console.log('disconnected');
});

ws.on('message', function message(data) {
  console.log(`Round-trip time: ${Date.now() - data} ms`);

  setTimeout(function timeout() {
    ws.send(Date.now());
  }, 500);
});

Use the Node.js streams API

import WebSocket, { createWebSocketStream } from 'ws';

const ws = new WebSocket('wss://websocket-echo.com/');

const duplex = createWebSocketStream(ws, { encoding: 'utf8' });

duplex.pipe(process.stdout);
process.stdin.pipe(duplex);

Other examples

For a full example with a browser client communicating with a ws server, see the examples folder.

Otherwise, see the test cases.

FAQ

How to get the IP address of the client?

The remote IP address can be obtained from the raw socket.

import { WebSocketServer } from 'ws';

const wss = new WebSocketServer({ port: 8080 });

wss.on('connection', function connection(ws, req) {
  const ip = req.socket.remoteAddress;
});

When the server runs behind a proxy like NGINX, the de-facto standard is to use the X-Forwarded-For header.

wss.on('connection', function connection(ws, req) {
  const ip = req.headers['x-forwarded-for'].split(',')[0].trim();
});

How to detect and close broken connections?

Sometimes the link between the server and the client can be interrupted in a way that keeps both the server and the client unaware of the broken state of the connection (e.g. when pulling the cord).

In these cases ping messages can be used as a means to verify that the remote endpoint is still responsive.

import { WebSocketServer } from 'ws';

function heartbeat() {
  this.isAlive = true;
}

const wss = new WebSocketServer({ port: 8080 });

wss.on('connection', function connection(ws) {
  ws.isAlive = true;
  ws.on('pong', heartbeat);
});

const interval = setInterval(function ping() {
  wss.clients.forEach(function each(ws) {
    if (ws.isAlive === false) return ws.terminate();

    ws.isAlive = false;
    ws.ping();
  });
}, 30000);

wss.on('close', function close() {
  clearInterval(interval);
});

Pong messages are automatically sent in response to ping messages as required by the spec.

Just like the server example above your clients might as well lose connection without knowing it. You might want to add a ping listener on your clients to prevent that. A simple implementation would be:

import WebSocket from 'ws';

function heartbeat() {
  clearTimeout(this.pingTimeout);

  // Use `WebSocket#terminate()`, which immediately destroys the connection,
  // instead of `WebSocket#close()`, which waits for the close timer.
  // Delay should be equal to the interval at which your server
  // sends out pings plus a conservative assumption of the latency.
  this.pingTimeout = setTimeout(() => {
    this.terminate();
  }, 30000 + 1000);
}

const client = new WebSocket('wss://websocket-echo.com/');

client.on('open', heartbeat);
client.on('ping', heartbeat);
client.on('close', function clear() {
  clearTimeout(this.pingTimeout);
});

How to connect via a proxy?

Use a custom http.Agent implementation like https-proxy-agent or socks-proxy-agent.

Changelog

We're using the GitHub releases for changelog entries.

License

MIT