npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

efficient-data-structures

v0.1.310

Published

Efficient data structures for Node: heaps, queues, tries, string builders etc.

Downloads

147

Readme

Efficient data structures for Node

build status coverage report npm npm

Installation

npm install --save efficient-data-structures

Efficient implementations

Usage

You need to first import the data structures that you're going to use.

import {
    BitVector,
    StringBuilder,
    Stack,
    Queue,
    SinglyLinkedList,
    SinglyLinkedListNode,
    DoublyLinkedList,
    DoublyLinkedListNode,
    BinaryTree,
    BinaryTreeNode,
    MinHeap,
    MaxHeap,
    Graph,
    GraphNode,
} from 'efficient-data-structures';

BitVector

const bitVector = new BitVector(10);

bitVector.set(0, true);
bitVector.set(1, false);

console.log(bitVector.get(0)); // true
console.log(bitVector.get(1)); // false

StringBuilder

const stringBuilder = new StringBuilder();

stringBuilder.append('100 degrees');
stringBuilder.append(' Fahrenheit');

console.log(stringBuilder.toString()); // 100 degrees Fahrenheit

Stack

const stack = new Stack();

stack.push(10);
stack.push(20);
stack.push(30);

console.log(stack.peek()); // 30
console.log(stack.pop());  // 30
console.log(stack.peek()); // 20

Queue

const queue = new Queue();

queue.enqueue(10);
queue.enqueue(20);
queue.enqueue(30);

console.log(queue.dequeue()); // 10
console.log(queue.dequeue()); // 20

SinglyLinkedList

const singlyLinkedList = new SinglyLinkedList();
const tomNode = new SinglyLinkedListNode('Tom');
const jimNode = new SinglyLinkedListNode('Jim');

singlyLinkedList.insert(tomNode, 0);
singlyLinkedList.insert(jimNode, 0);

singlyLinkedList.remove(jimNode);

console.log(singlyLinkedList.count()); // 1

DoublyLinkedList

const doublyLinkedList = new DoublyLinkedList();

const tomNode = new DoublyLinkedListNode('Tom');
const jimNode = new DoublyLinkedListNode('Jim');

doublyLinkedList.insert(tomNode, 0);
doublyLinkedList.insert(jimNode, 0);

doublyLinkedList.remove(jimNode);

console.log(doublyLinkedList.count()); // 1

BinaryTree

//     8
//    / \
//   4   10
//  / \    \
// 2   6    20
const root = new BinaryTreeNode(8);
    root.setLeft(new BinaryTreeNode(4));
        root.left.setLeft(new BinaryTreeNode(2));
        root.left.setRight(new BinaryTreeNode(6));
    root.setRight(new BinaryTreeNode(10));
        root.right.setRight(new BinaryTreeNode(20));
const tree = new BinaryTree(root);

console.log(tree.traverseInOrder());   // [2, 4, 6, 8, 10, 20]
console.log(tree.traversePreOrder());  // [8, 4, 2, 6, 10, 20]
console.log(tree.traversePostOrder()); // [2, 6, 4, 20, 10, 8]

console.log(tree.isBinarySearchTree()); // true
console.log(tree.isBalanced());         // true
console.log(tree.isFull());             // false
console.log(tree.isComplete());         // false
console.log(tree.isPerfect());          // false

MinHeap

//     2
//    / \
//   8   12
//  /
// 10
const minHeap = new MinHeap();

minHeap.insert(8);
minHeap.insert(10);
minHeap.insert(12);
minHeap.insert(2);

console.log(minHeap.extractMin()); // 2
console.log(minHeap.extractMin()); // 8

MaxHeap

//     12
//    /  \
//   8    10
//  /
// 2
const maxHeap = new MaxHeap();

maxHeap.insert(8);
maxHeap.insert(10);
maxHeap.insert(12);
maxHeap.insert(2);

console.log(maxHeap.extractMax()); // 12
console.log(maxHeap.extractMax()); // 10

Graph

// 1---4
//  \   \
//   2---3
//    \ /
//     5
const node1 = new GraphNode(1);
const node2 = new GraphNode(2);
const node3 = new GraphNode(3);
const node4 = new GraphNode(4);
const node5 = new GraphNode(5);

node1.children.push(node2);
node1.children.push(node4);
node2.children.push(node3);
node3.children.push(node4);
node3.children.push(node5);
node5.children.push(node2);

const graph = new Graph(node1);

console.log(graph.traverseDepthFirst());   // [1, 2, 3, 4, 5]
console.log(graph.traverseBreadthFirst()); // [1, 2, 4, 3, 5]

Contributing

Got a new data structure you'd like to see implemented in this package? Please go ahead and create a work item for me; or better yet, send a pull request and I'll be sure to take a look at it within 24 hours. Thanks!