easy-emebddings
v1.0.0
Published
Easy, fast and WASM/WebGPU accelerated vector embedding for the web platform. Locally via ONNX/Transformers.js and via API. Compatible with Browsers, Workers, Web Extensions, Node.js & co.
Downloads
16
Maintainers
Readme
easy-embeddings
Easy vector embeddings for the web platform. Use open source embedding models locally or an API (OpenAI, Voyage, Mixedbread).
🔥 Please note: This project relies on the currently unreleased V3 branch of
@xenova/transformers.js
combined with a patched, development version of theonnxruntime-web
to enable the latest, bleeding edge features (WebGPU and WASM acceleration) alongside unparalleled compatibility (even works in Web Extensions Service Workers).
📚 Install
npm/yarn/bun install easy-embeddings
⚡ Use
Remote inference (call an API)
Single text vector embedding
import { embed } from "easy-embeddings";
// single embedding, german embedding model
const embedding: EmbeddingResponse = await embed("Hallo, Welt!", "mixedbread-ai", {
model: "mixedbread-ai/deepset-mxbai-embed-de-large-v1",
normalized: true,
dimensions: 512,
}, { apiKey: import.meta.env[`mixedbread-ai_api_key`] })
Multi-text vector embeddings
import { embed } from "easy-embeddings";
// single embedding, german embedding model
const embedding: EmbeddingResponse = await embed(["Hello", "World"], "openai", {
model: "text-embedding-3-small"
}, { apiKey: import.meta.env[`openai_api_key`] })
Local inference
import { embed } from "easy-embeddings";
// single embedding, german embedding model
const embedResult = await embed(
["query: Foo", "passage: Bar"],
"local",
{
// https://huggingface.co/intfloat/multilingual-e5-small
model: "Xenova/multilingual-e5-small",
modelParams: {
pooling: "mean",
normalize: true, // so a single dot product of two vectors is enough to calculate a similarity score
quantize: true, // use a quantized variant (more efficient, little less accurate)
},
},
{
modelOptions: {
hideOnnxWarnings: false, // show warnings as errors in case ONNX runtime has a bad time
allowRemoteModels: false, // do not download remote models from huggingface.co
allowLocalModels: true,
localModelPath: "/models", // loads the model from public dir subfolder "models"
onnxProxy: false,
},
},
);
Advanced: Using a custom WASM runtime loader
import { embed } from "easy-embeddings";
// @ts-ignore
import getModule from "./public/ort-wasm-simd-threaded.jsep";
// single embedding, german embedding model
const embedResult = await embed(
["query: Foo", "passage: Bar"],
"local",
{
// https://huggingface.co/intfloat/multilingual-e5-small
model: "Xenova/multilingual-e5-small",
modelParams: {
pooling: "mean",
normalize: true, // so a single dot product of two vectors is enough to calculate a similarity score
quantize: true, // use a quantized variant (more efficient, little less accurate)
},
},
{
importWasmModule: async (
_mjsPathOverride: string,
_wasmPrefixOverride: string,
_threading: boolean,
) => {
return [
undefined,
async (moduleArgs = {}) => {
return await getModule(moduleArgs);
},
];
},
modelOptions: {
hideOnnxWarnings: false, // show warnings as errors in case ONNX runtime has a bad time
allowRemoteModels: false, // do not download remote models from huggingface.co
allowLocalModels: true,
localModelPath: "/models", // loads the model from public dir subfolder "models"
onnxProxy: false,
},
},
);
Download models locally
You might want to write and execute a script to manually download a model locally:
import { downloadModel } from "easy-embeddings/tools";
// downloads the model into the models folder
await downloadModel('Xenova/multilingual-e5-small', 'public/models')
Help improve this project!
Setup
Clone this repo, install the dependencies (bun
is recommended for speed),
and run npm run test
to verify the installation was successful. You may want to play with the experiments.