npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

downsample

v1.4.0

Published

Provides functions for time series data downsampling for visual representation

Downloads

75,332

Readme

downsample is useful when, not extremely surprisingly, you need to downsample a numeric time series before visualizing it without losing the visual characteristics of the data.

Installation

downsample is an NPM module. You can easily download it by typing something like the following in your project:

# for all the npm people out there
npm install downsample

# or if you are a fan of yarn
yarn add downsample

Usage

The package exports several methods for data downsampling:

You can read more about the details of these in the API section below.

API

ASAP :boom: new in 1.2.0 :boom:

Automatic Smoothing for Attention Prioritization (read more here) is a smoothing rather than downsampling method - it will remove the short-term noise and reveal the large-scale deviations.

ASAP accepts an array of data points (see DataPoint) or a TypedArray (see TypedArray support) and a target resolution (number of output data points) as arguments. It will always return the points in XYDataPoint format. See advanced API if you need to work with a custom data type.

function ASAP(data: DataPoint[], targetResolution: number): XYDataPoint[]
import { ASAP } from 'downsample';

// Or if your codebase does not supprot tree-shaking
import { ASAP } from 'downsample/methods/ASAP';

const chartWidth = 1000;
const smooth = ASAP([
  [0, 1000],
  [1, 1243],
  // ...
], chartWidth);

SMA :boom: new in 1.2.0 :boom:

Simple moving average with variable slide (read more here).

SMA accepts an array of data points (see DataPoint) or a TypedArray (see TypedArray support), size of a window over which to calculate average and a slide - an amount by which the window is shifted. It will always return the points in XYDataPoint format. See advanced API if you need to work with a custom data type.

function SMA(data: DataPoint[], windowSize: number, slide?: number = 1): XYDataPoint[]
import { SMA } from 'downsample';

// Or if your codebase does not supprot tree-shaking
import { SMA } from 'downsample/methods/SMA';

const chartWidth = 1000;
const smooth = SMA([
  [0, 1000],
  [1, 1243],
  // ...
], chartWidth);

LTTB

Largest triangle three buckets (read more here). If you are looking for the best performing downsampling method then look no more!

function LTTB(data: DataPoint[], targetResolution: number): DataPoint[]

LTTB accepts an array of data points (see DataPoint) or a TypedArray (see TypedArray support) and a target resolution (number of output data points) as arguments. See advanced API if you need to work with a custom data type.

The format of the data will be preserved, i.e. if passing an array of [number, number] data points as data, you will get an array of [number, number] on the output.

import { LTTB } from 'downsample';

// Or if your codebase does not supprot tree-shaking
import { LTTB } from 'downsample/methods/LTTB';

const chartWidth = 1000;
const downsampled = LTTB([
  [0, 1000],
  [1, 1243],
  // ...
], chartWidth);

LTOB

Largest triangle one bucket (read more here). Performs only slightly worse than LTTB.

function LTOB(data: DataPoint[], targetResolution: number): DataPoint[]

LTOB accepts an array of data points (see DataPoint) or a TypedArray (see TypedArray support) and a target resolution (number of output data points) as arguments. See advanced API if you need to work with a custom data type.

The format of the data will be preserved, i.e. if passing an array of [number, number] data points as data, you will get an array of [number, number] on the output.

import { LTOB } from 'downsample';

// Or if your codebase does not supprot tree-shaking
import { LTOB } from 'downsample/methods/LTOB';

const chartWidth = 1000;
const downsampled = LTOB([
  [0, 1000],
  [1, 1243],
  // ...
], chartWidth);

LTD

Largest triangle dynamic (read more here). The simplest downsampling method.

function LTD(data: DataPoint[], targetResolution: number): DataPoint[]

LTD accepts an array of data points (see DataPoint) or a TypedArray (see TypedArray support) and a target resolution (number of output data points) as arguments. See advanced API if you need to work with a custom data type.

The format of the data will be preserved, i.e. if passing an array of [number, number] data points as data, you will get an array of [number, number] on the output.

import { LTD } from 'downsample';

// Or if your codebase does not supprot tree-shaking
import { LTD } from 'downsample/methods/LTD';

const chartWidth = 1000;
const downsampled = LTD([
  [0, 1000],
  [1, 1243],
  // ...
], chartWidth);

DataPoint type

Represents a data point in the input data array. These formats are currently supported:

type DataPoint =
  [number, number] |
  [Date, number] |
  { x: number; y: number } |
  { x: Date; y: number } |

TypedArray support

It is now possible to pass TypedArray data to downsampling functions. The returned type will then match the input type, e.g. if Int16Array is passed in, the result will be a Int16Array:

const input: Int16Array = new Int16Array(...);
const result: Int16Array = LTD(input, 1000);

Advanced API

All the functions above work with DataPoint objects as a reasonable default. If however this does not fit your needs you can create your own version of a function using a downsampling function factory.

createASAP

Creates an ASAP smoothing function for a specific point data type P.

function createASAP({
  x: string | number | (point: P) => number,
  y: string | number | (point: P) => number,
  toPoint: (x: number, y: number) => P
}): ASAP;

createSMA

Creates a SMA smoothing function for a specific point data type P.

function createSMA({
  x: string | number | (point: P) => number,
  y: string | number | (point: P) => number,
  toPoint: (x: number, y: number) => P
}): SMA;

createLTD

Creates an LTD downsampling function for a specific point data type P.

function createLTD({
  x: string | number | (point: P) => number,
  y: string | number | (point: P) => number
}): LTD;

createLTOB

Creates an LTOB downsampling function for a specific point data type P.

function createLTOB({
  x: string | number | (point: P) => number,
  y: string | number | (point: P) => number
}): LTOB;

createLTTB

Creates an LTTB downsampling function for a specific point data type P.

function createLTTB({
  x: string | number | (point: P) => number,
  y: string | number | (point: P) => number
}): LTTB;

Demo

There is a very minimal interactive demo app available if you want to play around with the results of downsampling. Check it out here.

Acknowledgement

The implementation of LTD, LTOB and LTTB is based on Sveinn Steinarsson's 2013 paper Downsampling Time Series for Visual Representation that can be found here.

The implementation of ASAP is based on Kexin Rong's and Peter Bailis's 2017 paper. ASAP: Prioritizing Attention via Time Series Smoothing that can be found here. The original code can be found here