distributions-geometric-mean
v0.0.0
Published
Geometric distribution mean.
Downloads
2
Readme
Mean
Geometric distribution expected value.
The expected value for a geometric random variable is
where 0 <= p <= 1
is the success probability. The random variable X
denotes the number of failures until the first success in a sequence of independent Bernoulli trials.
Installation
$ npm install distributions-geometric-mean
For use in the browser, use browserify.
Usage
var mean = require( 'distributions-geometric-mean' );
mean( p[, opts] )
Computes the expected value for a geometric distribution with parameter p
. p
may be either a number
, an array
, a typed array
, or a matrix
.
var matrix = require( 'dstructs-matrix' ),
p,
mat,
out,
i;
out = mean( 0.2 );
// returns 4
p = [ 0.2, 0.4, 0.8, 1 ];
out = mean( p );
// returns [ 4, 1.5, 0.25, 0 ]
p = new Float32Array( p );
out = mean( p );
// returns Float64Array( [4,1.5,0.25,0] )
p = matrix( [ 0.2, 0.4, 0.8, 1 ], [2,2] );
/*
[ 0.2 0.4
0.8 1 ]
*/
out = mean( p );
/*
[ 4 1.5
0.25 0 ]
*/
The function accepts the following options
:
- accessor: accessor
function
for accessingarray
values. - dtype: output
typed array
ormatrix
data type. Default:float64
. - copy:
boolean
indicating if thefunction
should return a new data structure. Default:true
. - path: deepget/deepset key path.
- sep: deepget/deepset key path separator. Default:
'.'
.
For non-numeric arrays
, provide an accessor function
for accessing array
values.
var p = [
[0,0.2],
[1,0.4],
[2,0.8],
[3,1]
];
function getValue( d, i ) {
return d[ 1 ];
}
var out = mean( p, {
'accessor': getValue
});
// returns [ 4, 1.5, 0.25, 0 ]
To deepset an object array
, provide a key path and, optionally, a key path separator.
var p = [
{'x':[9,0.2]},
{'x':[9,0.4]},
{'x':[9,0.8]},
{'x':[9,1]}
];
var out = mean( p, {
'path': 'x|1',
'sep': '|'
});
/*
[ { x: [ 9, 4 ] },
{ x: [ 9, 1.5 ] },
{ x: [ 9, 0.25 ] },
{ x: [ 9, 0 ] } ]
*/
var bool = ( p === out );
// returns true
By default, when provided a typed array
or matrix
, the output data structure is float64
in order to preserve precision. To specify a different data type, set the dtype
option (see matrix
for a list of acceptable data types).
var p, out;
p = new Float64Array( [ 0.2,0.4,0.8,1 ] );
out = mean( p, {
'dtype': 'int32'
});
// returns Int32Array( [4,1,0,0] )
// Works for plain arrays, as well...
out = mean( [0.2,0.4,0.8,1], {
'dtype': 'int32'
});
// returns Int32Array( [4,1,0,0] )
By default, the function returns a new data structure. To mutate the input data structure (e.g., when input values can be discarded or when optimizing memory usage), set the copy
option to false
.
var p,
bool,
mat,
out,
i;
p = [ 0.2, 0.4, 0.8, 1 ];
out = mean( p, {
'copy': false
});
// returns [ 4, 1.5, 0.25, 0 ]
bool = ( p === out );
// returns true
mat = matrix( [ 0.2, 0.4, 0.8, 1 ], [2,2] );
/*
[ 0.2 0.4
0.8 1 ]
*/
out = mean( mat, {
'copy': false
});
/*
[ 4 1.5
0.25 0 ]
*/
bool = ( mat === out );
// returns true
Notes
If an element is not a number in the interval [0,1], the expected value is
NaN
.var p, out; out = mean( -1 ); // returns NaN out = mean( 2 ); // returns NaN out = mean( null ); // returns NaN out = mean( true ); // returns NaN out = mean( {'a':'b'} ); // returns NaN out = mean( [ true, null, [] ] ); // returns [ NaN, NaN, NaN ] function getValue( d, i ) { return d.x; } p = [ {'x':true}, {'x':[]}, {'x':{}}, {'x':null} ]; out = mean( p, { 'accessor': getValue }); // returns [ NaN, NaN, NaN, NaN ] out = mean( p, { 'path': 'x' }); /* [ {'x':NaN}, {'x':NaN}, {'x':NaN, {'x':NaN} ] */
Be careful when providing a data structure which contains non-numeric elements and specifying an
integer
output data type, asNaN
values are cast to0
.var out = mean( [ true, null, [] ], { 'dtype': 'int8' }); // returns Int8Array( [0,0,0] );
Examples
var matrix = require( 'dstructs-matrix' ),
mean = require( 'distributions-geometric-mean' );
var p,
mat,
out,
tmp,
i;
// Plain arrays...
p = new Array( 10 );
for ( i = 0; i < p.length; i++ ) {
p[ i ] = i / 10;
}
out = mean( p );
// Object arrays (accessors)...
function getValue( d ) {
return d.x;
}
for ( i = 0; i < p.length; i++ ) {
p[ i ] = {
'x': p[ i ]
};
}
out = mean( p, {
'accessor': getValue
});
// Deep set arrays...
for ( i = 0; i < p.length; i++ ) {
p[ i ] = {
'x': [ i, p[ i ].x ]
};
}
out = mean( p, {
'path': 'x/1',
'sep': '/'
});
// Typed arrays...
p = new Int32Array( 10 );
for ( i = 0; i < p.length; i++ ) {
p[ i ] = i / 10;
}
out = mean( p );
// Matrices...
mat = matrix( p, [5,2], 'int32' );
out = mean( mat );
// Matrices (custom output data type)...
out = mean( mat, {
'dtype': 'uint8'
});
To run the example code from the top-level application directory,
$ node ./examples/index.js
Tests
Unit
Unit tests use the Mocha test framework with Chai assertions. To run the tests, execute the following command in the top-level application directory:
$ make test
All new feature development should have corresponding unit tests to validate correct functionality.
Test Coverage
This repository uses Istanbul as its code coverage tool. To generate a test coverage report, execute the following command in the top-level application directory:
$ make test-cov
Istanbul creates a ./reports/coverage
directory. To access an HTML version of the report,
$ make view-cov
License
Copyright
Copyright © 2015. The Compute.io Authors.