distributions-exponential-mean
v0.0.0
Published
Exponential distribution mean.
Downloads
4
Readme
Mean
Exponential distribution expected value.
The expected value for an exponential random variable is
where lambda > 0
is the rate parameter.
Installation
$ npm install distributions-exponential-mean
For use in the browser, use browserify.
Usage
var mean = require( 'distributions-exponential-mean' );
mean( lambda[, opts] )
Computes the expected value for an exponential distribution with parameter lambda
. lambda
may be either a number
, an array
, a typed array
, or a matrix
. All lambda
values must be positive numbers. For non-positive inputs, NaN
is returned.
var matrix = require( 'dstructs-matrix' ),
lambda,
mat,
out,
i;
out = mean( 1 );
// returns 1
lambda = [ 1, 5, 10, 20 ];
out = mean( lambda );
// returns [ 1, 0.2, 0.1, 0.05 ]
lambda = new Float32ArrayArray( lambda );
out = mean( lambda );
// returns Float64Array( [1,0.2,0.1,0.05] )
lambda = matrix( [ 1, 5, 10, 20 ], [2,2] );
/*
[ 1, 5,
10, 20 ]
*/
out = mean( lambda );
/*
[ 1, 0.2,
0.1, 0.05 ]
*/
The function accepts the following options
:
- accessor: accessor
function
for accessingarray
values. - dtype: output
typed array
ormatrix
data type. Default:float64
. - copy:
boolean
indicating if thefunction
should return a new data structure. Default:true
. - path: deepget/deepset key path.
- sep: deepget/deepset key path separator. Default:
'.'
.
For non-numeric arrays
, provide an accessor function
for accessing array
values.
var lambda = [
[0,1],
[1,5],
[2,10],
[3,20]
];
function getValue( d, i ) {
return d[ 1 ];
}
var out = mean( lambda, {
'accessor': getValue
});
// returns [ 1, 0.2, 0.1, 0.05 ]
To deepset an object array
, provide a key path and, optionally, a key path separator.
var lambda = [
{'x':[9,1]},
{'x':[9,5]},
{'x':[9,10]},
{'x':[9,20]}
];
var out = mean( lambda, 'x|1', '|' );
/*
[
{'x':[9,1]},
{'x':[9,0.2]},
{'x':[9,0.1]},
{'x':[9,0.05]},
]
*/
var bool = ( data === out );
// returns true
By default, when provided a typed array
or matrix
, the output data structure is float64
in order to preserve precision. To specify a different data type, set the dtype
option (see matrix
for a list of acceptable data types).
var lambda, out;
lambda = new Float64Array( [ 1,5,10,20 ] );
out = mean( lambda, {
'dtype': 'int32'
});
// returns Int32Array( [ 1,0,0,0 ] )
// Works for plain arrays, as well...
out = mean( [1,5,10,20], {
'dtype': 'int32'
});
// returns Int32Array( [ 1,0,0,0 ] )
By default, the function returns a new data structure. To mutate the input data structure (e.g., when input values can be discarded or when optimizing memory usage), set the copy
option to false
.
var lambda,
bool,
mat,
out,
i;
lambda = [ 1, 5, 10, 20 ];
out = mean( lambda, {
'copy': false
});
// returns [ 1, 0.2, 0.1, 0.05 ]
bool = ( data === out );
// returns true
mat = matrix( [ 1, 5, 10, 20 ], [2,2] );
/*
[ 1, 5,
10, 20 ]
*/
out = mean( mat, {
'copy': false
});
/*
[ 1, 0.2,
0.1, 0.05 ]
*/
bool = ( mat === out );
// returns true
Notes
If the
lambda
parameter is not a positive number, the expected value isNaN
.var lambda, out; out = mean( -1 ); // returns NaN out = mean( 0 ); // returns NaN out = mean( null ); // returns NaN out = mean( true ); // returns NaN out = mean( {'a':'b'} ); // returns NaN out = mean( [ true, null, [] ] ); // returns [ NaN, NaN, NaN ] function getValue( d, i ) { return d.x; } lambda = [ {'x':true}, {'x':[]}, {'x':{}}, {'x':null} ]; out = mean( lambda, { 'accessor': getValue }); // returns [ NaN, NaN, NaN, NaN ] out = mean( lambda, { 'path': 'x' }); /* [ {'x':NaN}, {'x':NaN}, {'x':NaN, {'x':NaN} ] */
Be careful when providing a data structure which contains non-numeric elements and specifying an
integer
output data type, asNaN
values are cast to0
.var out = mean( [ true, null, [] ], { 'dtype': 'int8' }); // returns Int8Array( [0,0,0] );
Examples
var matrix = require( 'dstructs-matrix' ),
mean = require( 'distributions-exponential-mean' );
var lambda,
mat,
out,
tmp,
i;
// Plain arrays...
lambda = new Array( 10 );
for ( i = 0; i < lambda.length; i++ ) {
lambda[ i ] = i + 1;
}
out = mean( lambda );
// Object arrays (accessors)...
function getValue( d ) {
return d.x;
}
for ( i = 0; i < lambda.length; i++ ) {
lambda[ i ] = {
'x': lambda[ i ]
};
}
out = mean( lambda, {
'accessor': getValue
});
// Deep set arrays...
for ( i = 0; i < lambda.length; i++ ) {
lambda[ i ] = {
'x': [ i, lambda[ i ].x ]
};
}
out = mean( lambda, {
'path': 'x/1',
'sep': '/'
});
// Typed arrays...
lambda = new Int32Array( 10 );
for ( i = 0; i < lambda.length; i++ ) {
lambda[ i ] = i + 1
}
out = mean( lambda );
// Matrices...
mat = matrix( lambda, [5,2], 'int32' );
out = mean( mat );
// Matrices (custom output data type)...
out = mean( mat, {
'dtype': 'uint8'
});
To run the example code from the top-level application directory,
$ node ./examples/index.js
Tests
Unit
Unit tests use the Mocha test framework with Chai assertions. To run the tests, execute the following command in the top-level application directory:
$ make test
All new feature development should have corresponding unit tests to validate correct functionality.
Test Coverage
This repository uses Istanbul as its code coverage tool. To generate a test coverage report, execute the following command in the top-level application directory:
$ make test-cov
Istanbul creates a ./reports/coverage
directory. To access an HTML version of the report,
$ make view-cov
License
Copyright
Copyright © 2015. The Compute.io Authors.