distributions-exponential
v2.0.1
Published
Exponential distribution.
Downloads
127
Maintainers
Readme
exponential
Exponential distribution.
Installation
$ npm install distributions-exponential
For use in the browser, use browserify.
Usage
To use the module,
var createDist = require( 'distributions-exponential' );
To create an exponential distribution,
var dist = createDist();
The distribution is configurable and has the following methods...
dist.support()
Returns the distribution support, which is all positive real numbers and 0.
var support = dist.support();
// returns [ 0, +inf ]
dist.rate( [value] )
This method is a setter/getter. If no value
is provided, returns the rate
. To set the rate
,
dist.rate( 100 );
The default rate is 1.
dist.mean()
Returns the distribution mean
.
var mean = dist.mean();
// returns 1/rate
dist.variance()
Returns the distribution variance
.
var variance = dist.variance();
dist.median()
Returns the distribution median
.
var median = dist.median();
dist.mode()
Returns the distribution mode
.
var mode = dist.mode();
// returns 0
dist.skewness()
Returns the distribution skewness
.
var skewness = dist.skewness();
// returns 2
dist.ekurtosis()
Returns the distribution excess kurtosis
.
var excess = dist.ekurtosis();
// returns 6
dist.information()
Returns the Fisher information.
var info = dist.information();
// equals dist.variance()
dist.entropy()
Returns the distribution's differential entropy.
var entropy = dist.entropy();
dist.pdf( [arr] )
If a vector is not provided, returns the probability density function (PDF). If a vector is provided, evaluates the PDF for each vector element.
var data = [ 0, 1, 10, 100, 1000 ];
var pdf = dist.pdf( data );
// returns [...]
dist.cdf( [arr] )
If a vector is not provided, returns the cumulative density function (CDF). If a vector is provided, evaluates the CDF for each vector element.
var data = [ 0, 1, 10, 100, 1000 ];
var cdf = dist.cdf( data );
// returns [...]
dist.inv( [arr] )
If a cumulative probability vector is not provided, returns the inverse cumulative distribution (quantile) function. If a cumulative probability vector is provided, evaluates the quantile function for each vector element.
var probs = [ 0.025, 0.5, 0.975 ];
var quantiles = dist.inv( probs );
// returns [...]
Note: all vector values must exist on the interval [0, 1]
.
Examples
var createDist = require( 'distributions-exponential' );
// Define the distribution parameters...
var lambda = 0.1,
xLow = 0,
xHigh = 200;
// Create a vector...
var vec = new Array( 1000 ),
len = vec.length,
inc;
inc = ( xHigh - xLow ) / len;
for ( var i = 0; i < len; i++ ) {
vec[ i ] = inc*i + xLow;
}
// Create an exponential distribution and configure...
var dist = createDist().rate( lambda );
// Evaluate the probability density function over the vector...
var pdf = dist.pdf( vec );
var arr = new Array( 100 );
for ( var j = 0; j < arr.length; j++ ) {
arr[ j ] = [ vec[j], pdf[j] ];
}
console.log( arr );
// Evaluate the quantile function for canonical cumulative probability values...
var quantiles = dist.inv( [ 0.025, 0.5, 0.975 ] );
console.log( quantiles );
To run the example code from the top-level application directory,
$ node ./examples/index.js
Tests
Unit
Unit tests use the Mocha test framework with Chai assertions. To run the tests, execute the following command in the top-level application directory:
$ make test
All new feature development should have corresponding unit tests to validate correct functionality.
Test Coverage
This repository uses Istanbul as its code coverage tool. To generate a test coverage report, execute the following command in the top-level application directory:
$ make test-cov
Istanbul creates a ./reports/coverage
directory. To access an HTML version of the report,
$ open reports/coverage/lcov-report/index.html
License
Copyright
Copyright © 2014. Athan Reines.