didyoumean2
v7.0.4
Published
a library for matching human-quality input to a list of potential matches using the Levenshtein distance algorithm
Downloads
556,171
Maintainers
Readme
didyoumean2
didyoumean2
is a library for matching human-quality input to a list of potential matches using the Levenshtein distance algorithm.
It is inspired by didyoumean.js.
Why reinventing the wheel
Based on fastest-levenshtein, the fastest JS implementation of the Levenshtein distance algorithm
~100% faster than didyoumean.js
Well tested with 100% coverage
Static type checking with TypeScript
More control on what kind of matches you want to return
Support matching object's
path
instead of justkey
Installation
npm install didyoumean2
const didYouMean = require('didyoumean2').default
// or if you are using TypeScript or ES module
import didYouMean from 'didyoumean2'
// you can also access to Enums via:
const {
default: didYouMean,
ReturnTypeEnums,
ThresholdTypeEnums,
} = require('didyoumean2')
// or
import didYouMean, { ReturnTypeEnums, ThresholdTypeEnums } from 'didyoumean2'
Development Setup
We are using corepack to manage the yarn
version
corepack enable
Usage
didYouMean(input, matchList[, options])
input {string}
: A string that you are not sure and want to match withmatchList
matchList {Object[]|string[]}
: A List for matching withinput
options {Object}
(optional): An options that allows you to modify the behavior@return {Array|null|Object|string}
: A list of or single matched result(s), return object ifmatch
is{Object[]}
Options
caseSensitive {boolean}
default:
false
Perform case-sensitive matching
deburr {boolean}
default:
true
Perform combining diacritical marks insensitive matching
Refer to lodash _.deburr for how it works
matchPath {Array}
default:
[]
If your
matchList
is an array of object, you must usematchPath
to point to the string that you want to matchRefer to ramda R.path for how to define the path, e.g.
['obj', 'array', 0, 'key']
returnType {string}
- default:
ReturnTypeEnums.FIRST_CLOSEST_MATCH
| returnType | Description |
| ------------------------------------- | ----------------------------------------------------------------- |
| ReturnTypeEnums.ALL_CLOSEST_MATCHES
| Return all matches with the closest value to the input
in array |
| ReturnTypeEnums.ALL_MATCHES
| Return all matches in array |
| ReturnTypeEnums.ALL_SORTED_MATCHES
| Return all matches in array, sorted from closest to furthest |
| ReturnTypeEnums.FIRST_CLOSEST_MATCH
| Return first match from ReturnTypeEnums.ALL_CLOSEST_MATCHES
|
| ReturnTypeEnums.FIRST_MATCH
| Return first match (FASTEST) |
threshold {integer|number}
depends on
thresholdType
type:
{number}
(similarity
) or{integer}
(edit-distance
)default:
0.4
(similarity
) or20
(edit-distance
)If the result is larger (
similarity
) or smaller (edit-distance
) than or equal to thethreshold
, that result is matched
thresholdType {string}
- default:
ThresholdTypeEnums.SIMILARITY
| thresholdType | Description |
| ---------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------ |
| ThresholdTypeEnums.EDIT_DISTANCE
| Refer to Levenshtein distance algorithm, must be integer
, lower value means more similar |
| ThresholdTypeEnums.SIMILARITY
| l = max(input.length, matchItem.length), similarity = (l - editDistance) / l
, number
from 0
to 1
, higher value means more similar |
trimSpaces {boolean}
default:
true
Remove noises when matching
Trim all starting and ending spaces, and concatenate all continuous spaces to one space
Test
Before all:
npm install -g yarn
yarn install
Unit test and coverage:
yarn test
Linter:
yarn lint