dft-easy
v1.2.0
Published
Discrete Fourrier Transform made easy
Downloads
5
Readme
Dft-Easy
Discrete Fourrier Transform made easy
Example
let data = [
[0.00, 1],
[0.25, 0],
[0.50, -1],
[0.75, 0],
[1.00, 1],
[1.25, 0],
[1.50, -1],
[1.75, 0],
]
let dftResult = require("dft-easy")(data)
[
[frequency0, frequency0Magnitude, frequency0Phase],
[frequency1, frequency1Magnitude, frequency1Phase],
...
]
require("gnu-plot")().plot([ {data: dftResult} ])
let dftResult = require("dft-easy")(data, {frequencies:{list:[0.5,1,2]}})
[
[ 0.5, 0.36..., 2.7... ],
[ 1, 0.91..., 2e-16 ],
[ 2, 0.02..., 5e-16 ]
]
For exemples using realistic data please see:
- Linear scale: demo/demo.js
- Logarithmic scale: demo/demo_dB.js
Methods
dft(data, options)
execute dft
return
result formatted as :
[
[frequency0, frequency0Magnitude, frequency0Phase],
[frequency1, frequency1Magnitude, frequency1Phase],
...
]
data
Ordered data points formatted as :
[
[sample0Time, sample0Amplitude],
[sample1Time, sample1Amplitude],
...
]
options
Note that the object is cloned and therefore not modified.
If you want to read or optimize the calculation of default options, see dft.constructOptions().
options.frequencies
default: {}
There are 3 possibilities:
- provide an Array of frequencies in
options.frequencies.list
- provide
{min, max, number, logBase}
parameters to generate this list (see default) - provide some or none of these parameters. The rest will be infered from the data (see default)
options.frequencies.min
default: 1/(data[data.length-1][0]-data[0][0])
Maximum frequency of the dft
Default is calculated from data duration, because you need at least one full period to detect a certain frequency
options.frequencies.max
default: (1/<minimum time Delta>) / 2
Minimum frequency of the dft
Default is calculated from the minimum time delta between every data point. Nyquist says that a frequency can only be correctly represented by a double sample frequency.
options.frequencies.number
default: 4096
Number of equally spaced points (at log options.frequencies.logBase)
options.frequencies.logBase
default: 10
Base of the logarithmic spacing of frequencies
options.frequencies.list
default: <Array containining options.frequencies.number
frequencies in [options.frequencies.min
, options.frequencies.max
], equally spaced in a logarithmic space of base options.frequencies.logBase
>
Array of frequencies where the dft will calculate the Magnitude and Phase
options.window(t)
default: dft.windows.Taylor()
Function taking t from 0->1 and returning a multiplication factor.
Integral(window(t), 0, 1) should be equal to 1.
You can provide your own window function, or pick one from dft.windows :
[
Box(),
Triangular(),
Welch(),
Hann(),
Hamming(),
Blackman(),
Nuttal(),
BlackmanNuttal(),
BlackmanHarris(),
FlatTop(),
Taylor({interpolationSteps:256, sidelobesNumber:4, sidelobesAttenuation:35/*dB*/}),
Tukey({alpha:.5})
]
Some have configurable parameters that are indicated with their defaults
Most of these come from wikipedia.org/wiki/Window_function
dft.constructOptions(data, options)
This is the method that fills all the options values that aren't provided with their defaults.
You should cache this object when calling the dft quickly or when you want the frequency list to be stable.
let dftOptions = dft.constructOptions(dataChunks[0])
for(let i=0; i<iMax; i++){
dft(dataChunks[i], dftOptions)
}
return
Constructed options object
options
See dft().
dft.peak(dftResult)
Utility to find Magnitude peak in dftResult
returns
[frequency, magnitude, phase]
dftResult
Result returned from dft()