npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

dclassify

v1.1.2

Published

Optimized Naive Bayesian classifier for NodeJS

Downloads

125

Readme

dclassify

Build Status npm version

dclassify is a Naive Bayesian classifier for NodeJS that goes one step further than your usual binary classifier by introducing a unique probablility-of-absence optimisation. In testing this optimisation has led to a ~10% improvement in correctness over conventional binary classifiers. It is mainly intended for classifying items based on a finite set of characteristics, rather than for language processing.

General-purpose Document and DataSet classes are provided for training and test data sets.

If the applyInverse optimisation is used, dclassify will calculate probabilities based on the present tokens as usual, but will also calculate a probability-of-absence for missing tokens. This is unconventional but produces better results particularly when working with smaller vocabularies. Its especially well-suited for classifying items based on a limited set of characteristics.

slides

Installation

npm install dclassify

Usage

  1. Require the classifier and reference its utilities.
  2. Create Document instances with names and an array of tokens representing the document's characteristics.
  3. Add document instances to a DataSet using appropriate categories.
  4. Create and train a classifier using the DataSet.
  5. Test the classifier using a test Document.

    // module dependencies
    var dclassify = require('dclassify');

    // Utilities provided by dclassify
    var Classifier = dclassify.Classifier;
    var DataSet    = dclassify.DataSet;
    var Document   = dclassify.Document;
    
    // create some 'bad' test items (name, array of characteristics)
    var item1 = new Document('item1', ['a','b','c']);
    var item2 = new Document('item2', ['a','b','c']);
    var item3 = new Document('item3', ['a','d','e']);

    // create some 'good' items (name, characteristics)
    var itemA = new Document('itemA', ['c', 'd']);
    var itemB = new Document('itemB', ['e']);
    var itemC = new Document('itemC', ['b','d','e']);

    // create a DataSet and add test items to appropriate categories
    // this is 'curated' data for training
    var data = new DataSet();
    data.add('bad',  [item1, item2, item3]);    
    data.add('good', [itemA, itemB, itemC]);
    
    // an optimisation for working with small vocabularies
    var options = {
        applyInverse: true
    };
    
    // create a classifier
    var classifier = new Classifier(options);
    
    // train the classifier
    classifier.train(data);
    console.log('Classifier trained.');
    console.log(JSON.stringify(classifier.probabilities, null, 4));
    
    // test the classifier on a new test item
    var testDoc = new Document('testDoc', ['b','d', 'e']);    
    var result1 = classifier.classify(testDoc);
    console.log(result1);

Probabilities

The probabilities get calculated like this.

    {
        "bad": {
            "a": 1,
            "b": 0.6666666666666666,
            "c": 0.6666666666666666,
            "d": 0.3333333333333333,
            "e": 0.3333333333333333
        },
        "good": {
            "a": 0,
            "b": 0.3333333333333333,
            "c": 0.3333333333333333,
            "d": 0.6666666666666666,
            "e": 0.6666666666666666
        }
    }

Output

Standard results look like this:

    {
        "category": "good",
        "probability": 0.6666666666666666,
        "timesMoreLikely": 2,
        "secondCategory": "bad",
        "probabilities": [
            { "category": "good", "probability": 0.14814814814814814},
            { "category": "bad", "probability": 0.07407407407407407}
        ]
    }

If you use the 'applyInverse' option, the results are much more emphatic, because training indicates bad items never lack the "a" token.

    {
        "category": "good",
        "probability": 1,
        "timesMoreLikely": "Infinity",
        "secondCategory": "bad",
        "probabilities": [
            { "category": "good", "probability": 0.09876543209876543 },
            { "category": "bad", "probability": 0 }
        ]
    }