npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

dc-addons-paired-row

v0.92.0

Published

Created a Pyramid Population

Downloads

1

Readme

DC Addons Population Pyramid Chart

⚠️ Use with caution

This chart is a forked of the dc-addons-paired-rows chart from dc-addons to build a population pyramid chart.

yarn add dc-addons-paired-row
npm i dc-addons-paired-row

Example

js
import pairedRow from 'dc-addons-paired-row'
import * as d3 from 'd3';
import crossfilter from 'crossfilter2'
import dc from 'dc'

var chart = pairedRow('#chart', 'main');
dc.chartRegistry.register(chart, 'main');
var filter = dc.pieChart('#filter', 'main');
var state = dc.pieChart('#state', 'main');


d3.csv('data/demo3.csv', function(error, experiments) {
  var ndx = crossfilter(experiments),
    ageGenderDimension = ndx.dimension(function(d) {
      var age_range = 'Unknown';

      if (d.age <= 9) {
        age_range = '0 - 9';
      } else if (d.age <= 19) {
        age_range = '10 - 19';
      } else if (d.age <= 29) {
        age_range = '20 - 29';
      } else if (d.age <= 39) {
        age_range = '30 - 39';
      } else if (d.age <= 49) {
        age_range = '40 - 49';
      } else if (d.age <= 59) {
        age_range = '50 - 59';
      } else if (d.age <= 69) {
        age_range = '60 - 69';
      } else if (d.age <= 79) {
        age_range = '70 - 79';
      } else if (d.age <= 89) {
        age_range = '80 - 89';
      } else if (d.age <= 99) {
        age_range = '90 - 99';
      } else if (d.age >= 100) {
        age_range = '100+';
      }

      return [d.gender, age_range];
    }),
    ageGenderGroup = ageGenderDimension.group().reduceCount(),
    genderDimension = ndx.dimension(function(d) { return d.gender; }),
    genderGroup = genderDimension.group().reduceCount(),
    stateDimension = ndx.dimension(function(d) { return d.state; }),
    stateGroup = stateDimension.group().reduceCount();

  const group = {
    all: function() {
      var age_ranges = ['0 - 9', '10 - 19', '20 - 29', '30 - 39', '40 - 49', '50 - 59', '60 - 69', '70 - 79', '80 - 89', '90 - 99', '100+'];

      // convert to object so we can easily tell if a key exists
      var values = {};
      ageGenderGroup.all().forEach(function(d) {
        values[d.key[0] + '.' + d.key[1]] = d.value;
      });

      // convert back into an array for the chart, making sure that all age_ranges exist
      var g = [];
      age_ranges.forEach(function(age_range) {
        g.push({
          key: ['Male', age_range],
          value: values['Male.' + age_range] || 0
        });
        g.push({
          key: ['Female', age_range],
          value: values['Female.' + age_range] || 0
        });
      });

      return g;
    }
  };

  chart.options({
    // display
    width: 250,
    height: 250,
    labelOffsetX: -50,
    fixedBarHeight: 10,
    gap: 10,
    colorCalculator: function(d) {
      if (d.key[0] === 'Male') {
        return '#5A9BCA';
      }

      return '#C95AC7';
    },

    // data
    dimension: ageGenderDimension,
    group: group,

    // misc
    renderTitleLabel: true,
    title: function(d) {
    },
    label: function(d) {
      return d.key[1];
    },
    cap: 15,

    // if elastic is set than the sub charts will have different extent ranges, which could mean the data is interpreted incorrectly
    elasticX: true,

    // custom
    leftKeyFilter: function(d) {
      return d.key[0] === 'Male';
    },
    rightKeyFilter: function(d) {
      return d.key[0] === 'Female';
    },
  })

  chart.pyramidChart()

  chart.rightChart().on('filtered', function() {
    state.redraw()
    filter.redraw()
    chart.rightChart().redraw()
  })

  chart.leftChart().on('filtered', function() {
    state.redraw()
    filter.redraw()
    chart.leftChart().redraw()
  })

  filter.options({
    dimension: genderDimension,
    group: genderGroup
  })

  state.options({
    dimension: stateDimension,
    group: stateGroup
  })

  dc.renderAll('main');
});
css
.left-chart.dc-chart g.row text {
  display: none;
}

.dc-chart .axis {
  display: none;
}

.dc-chart .axis-y {
  display: block;
}

.dc-chart rect {
  rx: 5px;
  transition: all 1s ease-in-out;
}

.right-chart.dc-chart g.row text.titlerow {
  display: none;
}

.right-chart.dc-chart g.row text {
  fill: #111;
  pointer-events: none;
}