npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

datavan

v4.2.8

Published

Define your collections layer over redux state, with mixins to fetch, submit changes to your server

Downloads

36

Readme

datavan: in-memory mongodb for react that can track changes and sync with server

https://img.shields.io/npm/v/datavan.svg state npm npm

Features

  • based on New React Context
  • mongodb-like find(), update() api
  • design with offline in mind
  • customizable server fetch, submit, persistent, conflict-resolve logic
  • built-in reselect-like memoizing layer
  • supports server rendering
  • code in es6, support tree-shaking

How It works?

During find(), datavan will query your local-data first. If local-data is missing, it will call your onFetch() as a side effect and update the local-data.

Table of Contents

Other Docs

Getting Started

import _ from 'lodash'
import { createDatavanContext } from 'datavan'

const Van = createDatavanContext({
  // defined collection called 'myUserTable'
  myUserTable: {
    onFetch(collection, query, option) {
      return Promise.resolve([{ _id: 'id', name: 'john' }])
    },
  },
})

render(
  <Van.Provider store={store}>
    ...
    <Van>
      {db => {
        // first call result will be undefined
        // after HTTP response, connect will be re-run
        // second result will get user object
        const users = db.find('myUserTable', { name: { $in: ['John'] } })

        const onClick = () => db.update('myUserTable', { name: 'John' }, { $merge: { name: 'smith' } })

        return (
          <button onClick={onClick}>
            {_.map(users, 'name').join()}
          </button>
        )
      }}
    </Van>
    ...
  </Van.Provider>
)

Setup

createDb

import { createDb } from 'datavan'

const db = createDb({
  myUserTable: {
    // id field for document (default: `_id`)
    idField: 'id',

    // async fetch function (default: `undefined`). Should return array or map of documents
    onFetch(query, option, collection) {
      return fetch('restful-api?name=john')
    },

    // cast and convert doc fields. Return: casted doc
    // NOTE only cast to primitive types that can use === to compare. (DON'T cast to Date, Object, Array or anything that cannot be JSON.stringify)
    cast(doc) {
      doc.count = parseInt(doc.count, 10)
      // Can cast to Number as count === JSON.parse(JSON.stringify(count))
      doc.arr = 'a,b'.split(',')
      // Can cast to Number as arr !== JSON.parse(JSON.stringify(arr))
      return doc
    },

    onInsert(doc) {
    },

    onLoad(doc) {
    },

    // generate a new tmp id string (default: genId from datavan)
    genId: genId,

    getFetchQuery: (query, idField) => '',
    // calculate and return fetchKey (to determine cache hit or miss) from fetchQuery (default: defaultGetQueryString from datavan)
    getFetchKey: (query, option) => '',

    // another way to setup initial data. With `{ byId: {}, originals: {}, fetchAts: {} }` object tables.
    initState: {
      // byId is table of docs
      byId: {
        'user-1': { _id: 'user-1', name: 'John' },
      },
      // originals is table of modified docs' originals
      originals: {
        'user-1': { _id: 'user-1', name: 'Old Name' },
      },
      // fetchAts is server fetched queries times (msec, to prevent re-fetch after server rendering)
      fetchAts: {},
    },
  },
})

db.find('myUserTable', { name: 'John' })

data inside db

datavan will store docs in the following structure

const db = createDb()
db = {
  user_table: {
    submits: {
      id_1: {
        _id: 'id_1',
        name: 'John',
      },
      id_2: {
        _id: 'id_2',
        name: 'May',
      },
    },

    // table of modified docs' originals
    originals: {},
    preloads: {},

    // server fetch times/markers (msec, to prevent re-fetch after server rendering)
    fetchAts: {},
  },
}

Better Performance

memoize result and auto re-run

import { createDatavanContext, getMemoizeHoc } from 'datavan'

const Van = createDatavanContext(...)
const withVan = getMemoizeHoc(Van)

const MyApp = withVan(
  // array of props that provide to map function
  ['name', 'role'],
  // map function
  (db, { name, role }) => {
    return { users: db.find('user_table', { name, role }) }
  }
)(ReactComponent)

API

find, pick

db.find(collection, query, [option])
// Return: Array of documents
  • collection: collection name
  • query: Array | query-object (mongodb like query object, we use mingo to filter documents)
arr = db.find('user_table', { name: 'john' })

// query starts with $$ which trigger find within the result from onFetch response
arr = db.find('user_table', { name: 'john', $$limit: 10, $$sort: ... })

userById = db.pick('user_table', { name: 'john' })

findAsync, pickAsync

db.findAsync(collection, query, [option])

byId = db.pickAsync(collection, query, [option])

Async function that always fetch and find data from server

findInMemory

like find() but only find in local memory

fetch

internally used by find(), findAsync() to call onFetch and return a raw result in promise. Without call findInMemory() after onFetch to normalise onFetch result.

get

doc = db.get('user_table', 'id-123')

getById, getOriginals, getSubmits

// get all documents. This won't trigger onFetch()
const docsTable = db.getById('user_table')

// get local changed documents
const dirtyDocs = db.getSubmits('user_table')

// get local changed documents' originals
const originalDocs = db.getOriginals('user_table')

const docsPreloads = db.getPreloads('user_table')

insert

Return: inserted docs

insertedDoc = db.insert('user_table', { name: 'Mary' })
// can also insert array
insertedDocs = db.insert('user_table', [{ name: 'Mary' }, { name: 'John' }])

update

const query = { name: 'Mary' }
const mutation = { $merge: { name: 'Mary C' } }
db.update('user_table', query, mutation)

remove

remove all docs that match the query

db.remove('user_table', { name: 'May' })

mutate

mutate documents using immutability-helper syntax

// merge by doc id
db.mutate('user_table', 'id-123', { $merge: { name: 'Mary' } })

// merge by array of path
db.mutate('user_table', ['id-123', 'name'], { $set: 'Mary' })

// merge in many docs
db.mutate('user_table', { $merge: { docId1: doc1, docId2: doc2 } })

set

shortcut of mutate which always use { $set: value }

invalidate

// invalidate all collections
db.invalidate()

// invalidate one collection (all docs)
db.invalidate('user_table')

// invalidate one collection (some docs)
db.invalidate('user_table', ['user-1', 'user-2'])

reset

reset local change and re-fetch in future get/find

// reset all collections
db.reset()

// reset one collection (all docs)
db.reset('user_table')

// reset one collection (some docs)
db.reset('user_table', ['user-1', 'user-2'])

load

load bulk data into store. data can be

db.load('user_table', data, option)
  • Array of docs
  • Or a object with { byId: {}, originals: {}, fetchAts: {} }
  • Or Table of docs
// Array of docs
db.load('user_table', [{ _id: 'user-1', name: 'John' }])

// Or a object with at least one of `{ byId: {}, originals: {}, fetchAts: {} }`
db.load('user_table', {
  // byId is table of docs
  byId: {
    'user-1': { _id: 'user-1', name: 'John' },
  },
  // originals is table of modified docs' originals
  originals: {
    'user-1': { _id: 'user-1', name: 'Old Name' },
  },
  // fetchAts is server fetched queries times (msec, to prevent re-fetch after server rendering)
  fetchAts: {},
  // submitted tmp and stored id mapping
  $submittedIds: { tmpId: storedId },
})

// Or Table of docs (byId)
db.load('user_table', {
  'user-1': { _id: 'user-1', name: 'John' },
})

// load collections
db.load({
  'user_table': {
    'user-1': { _id: 'user-1', name: 'John' },
  },
  'collection-2': {...}
})
  • load() data will consider as fill data from backend and trigger re-render

recall

call a function (anonymous or collection-defined) only-if store data or argument changed. If no changes, cached result will be used.

// recall collection-defined function
const db = createDb({
  myUserTable: {
    groupByFunc(byId, arg1) {
      return _.groupBy(byId, arg1)
    },
  },
})
const result = db.recall('myUserTable', 'groupByFunc', 'arg1-value')