datagovsg-plottable-charts
v3.4.10
Published
Reusable Plottable chart components
Downloads
10
Keywords
Readme
datagovsg-plottable-charts
Motivation
Generating a chart is easy, making it looks beautiful requires much more effort. Numerous charting libraries have been written to solves the basic problem of converting data to chart objects. Regardless of the library you choose, out-of-the-box defaults hardly produces the look you want.
Charts on Data.gov.sg are rendered using the Plottable library. Based on D3, it is highly flexible and gives you many low level controls to fine-tune every single detail. However, this power comes at the price of additional configurations. We want to abstract away these configurations by creating wrappers that pre-apply all the styles we want on our component. That's why we created this library.
What it does for you
Tooltips
Pie chart labels
Automatically downsample tick marks
And many more...
How to use
Dependencies
- D3
- Plottable
- JQuery (optional, only if you require tooltip)
Use with bundler (Webpack, Rollup etc)
npm install --save datagovsg-plottable-charts
<!-- html -->
<link rel="stylesheet" href="lib/plottable.css">
<link rel="stylesheet" href="lib/datagovsg-charts.css">
<!-- ... -->
<script src="lib/d3.min.js"></script>
<script src="lib/plottable.min.js"></script>
/* js */
import {SimplePie} from 'datagovsg-plottable-charts'
// Instantiate the chart component
const pie = new SimplePie(props)
// Mount component
pie.mount(document.getElementById('ctn'))
// Update chart
pie.update(newProps)
Using plugins
import {
highlightOnHover,
setupOuterLabel
} from 'datagovsg-plottable-charts/dist/plugins'
highlightOnHover(pie)
setupOuterLabel(pie)
Use without a bundler
<!-- html -->
<script src="lib/datagovsg-charts.min.js"></script>
/* js */
const {SimplePie, plugins} = window.DatagovsgCharts
const {highlightOnHover, setupOuterLabel} = plugins
const pie = new SimplePie(props)
highlightOnHover(pie)
setupOuterLabel(pie)
Full Component List
Pre-styled
- DatagovsgSimplePie
- DatagovsgSimpleBar
- DatagovsgHorizontalBar
- DatagovsgGroupedBar
- DatagovsgStackedBar
- DatagovsgLine
Unstyled
Full Plugin List
- highlightOnHover
- setupTooltip
- setupPopover
- setupPopoverOnGuideLine
- setupShadowWithPopover
- customizeTimeAxis
- removeInnerPadding
- downsampleTicks
Useful helpers
PivotTable
Example usage
import {DatagovsgLine} from 'datagovsg-plottable-charts'
import PivotTable, {
filterItems,
filterGroups,
groupItems,
aggregate
} from 'datagovsg-plottable-charts/dist/PivotTable'
const pivotTable = new PivotTable(data)
pivotTable.push(
filterItems('income', {type: 'exclude', values: ['-', 'na']}),
groupItems('gender'),
filterGroups('gender', {type: 'exclude', values: ['Total']})
aggregate('year', 'income')
)
const processedData = pivotTable.transform()
const series = processedData.map(g => ({
label: g._group.gender,
series: g._summaries[0].series
}))
const chart = new DatagovsgLine({data: series})
chart.mount(document.getElementById('chart'))
How it works
Original data
| year | gender | income | | ---- | ------ | ------ | | 2006 | Total | 2042 | | 2016 | Total | 3250 | | 2017 | Total | - | | 2006 | Male | 2213 | | 2016 | Male | 3500 | | 2006 | Female | 1875 | | 2016 | Female | 2979 |
Transform into custom data structure
pivotTable.transform()
// returns
[
{
_group: {},
_items: [
{year: 2006, gender: 'Total', income: 2042},
{year: 2016, gender: 'Total', income: 3250},
{year: 2016, gender: 'Total', income: '-'},
{year: 2006, gender: 'Male', income: 2213},
{year: 2016, gender: 'Male', income: 3500},
{year: 2006, gender: 'Female', income: 1875},
{year: 2016, gender: 'Female', income: 2979}
],
_summaries: []
}
]
filterItems( )
pivotTable.push(
filterItems('income', {type: 'exclude', values: ['-', 'na']})
)
pivotTable.transform()
// returns
[
{
_group: {},
_items: [
{year: 2006, gender: 'Total', income: 2042},
{year: 2016, gender: 'Total', income: 3250},
{year: 2006, gender: 'Male', income: 2213},
{year: 2016, gender: 'Male', income: 3500},
{year: 2006, gender: 'Female', income: 1875},
{year: 2016, gender: 'Female', income: 2979}
],
_summaries: []
}
]
groupItems( )
pivotTable.push(
filterItems('income', {type: 'exclude', values: ['Total']}),
groupItems('gender')
)
pivotTable.transform()
// returns
[
{
_group: {gender: 'Total'},
_items: [
{year: 2006, gender: 'Total', income: 2042},
{year: 2016, gender: 'Total', income: 3250},
],
_summaries: []
},
{
_group: {gender: 'Male'},
_items: [
{year: 2006, gender: 'Male', income: 2213},
{year: 2016, gender: 'Male', income: 3500},
],
_summaries: []
},
{
_group: {gender: 'Female'},
_items: [
{year: 2006, gender: 'Female', income: 1875},
{year: 2016, gender: 'Female', income: 2979}
],
_summaries: []
}
]
filterGroups( )
pivotTable.push(
filterItems('income', {type: 'exclude', values: ['-', 'na']}),
groupItems('gender'),
filterGroups('gender', {type: 'exclude', values: ['Total']})
)
pivotTable.transform()
// returns
[
{
_group: {gender: 'Male'},
_items: [
{year: 2006, gender: 'Male', income: 2213},
{year: 2016, gender: 'Male', income: 3500},
],
_summaries: []
},
{
_group: {gender: 'Female'},
_items: [
{year: 2006, gender: 'Female', income: 1875},
{year: 2016, gender: 'Female', income: 2979}
],
_summaries: []
}
]
aggregate( )
pivotTable.push(
filterItems('income', {type: 'exclude', values: ['-', 'na']}),
groupItems('gender'),
filterGroups('gender', {type: 'exclude', values: ['Total']})
aggregate('year', 'income')
)
pivotTable.transform()
// returns
[
{
_group: {gender: 'Male'},
_items: [
{year: 2006, gender: 'Male', income: 2213},
{year: 2016, gender: 'Male', income: 3500},
],
_summaries: [
{
labelField: 'year',
valueField: 'income',
series: [
{label: 2006, value: 2213},
{label: 2016, value: 3500}
]
}
]
},
{
_group: {gender: 'Female'},
_items: [
{year: 2006, gender: 'Female', income: 1875},
{year: 2016, gender: 'Female', income: 2979}
],
_summaries: [
{
labelField: 'year',
valueField: 'income',
series: [
{label: 2006, value: 1875},
{label: 2016, value: 2979}
]
}
]
}
]
Using without bundler
<!-- html -->
<script src="lib/pivot-table.min.js"></script>
/* js */
const PivotTable = window.PivotTable
const {filterItems, groupItems, filterGroups, aggregate} = PivotTable
Debugging guide
- Clone the datagovsg/datagovsg-plottable-charts repo
cd
to the cloned repo- Run
npm install
- Change main field in the package.json to
"main": "src/index.js"
- Delete module field in the package.json
- Set up a symlink
sudo npm link
cd
to your working directory- Run
npm link datagovsg-plottable-charts