datable
v1.0.3
Published
A light weight tool for handle data in table.
Downloads
9
Readme
datable
A light weight tool for handle data in table.
Datable是一个轻量级的数据处理工具,它可以将一个二维的数据进行Fiter,Group等操作。 Datable非常灵活,没有太多规则,比如说Group的操作如下:
// This is a GroupBy demo.
d.groupby(['date'] /* 指定按照date这一列来group */, function (res) {
// date相同的行最后会被合并为一行,这里是对最终要输出的那一行的初始化
res.successCount = 0
res.errorCount = 0
}, function (res, item) {
// 每一行都会被被交给这个函数处理,这里收到两个参数,第一个res是最终要合并输出的结果,item是当前遍历到的数据行
if (item.code == '200') {
res.successCount += parseInt(item.cnt)
} else {
res.errorCount += parseInt(item.cnt)
}
})
Installation
npm install datable
Usage
var Datable = require('datable')
var d = new Datable({
SPLIT_FLAG: ','
})
d.readDataFromFile('./input.csv')
console.log(d.getData())
d.filter(function (item) {
return item.country != 'TT'
})
console.log(d.getData())
API
Refer to demo/demo.js
, This demo will transfer data in demo/input.csv
to demo/output.csv
Datable
new Datable([options, data])
options:
- SPLIT_FLAG : default is '\t'
data:
A array.
filter
Filter out some rows according to a condition.
Before:
date,country,code,cnt
2014-01-01,US,500,1001
2014-01-02,CN,500,500
2014-01-02,US,200,1001
2014-01-01,CN,200,500
2014-01-01,CN,200,1001
2014-01-01,TT,500,500
Code:
d.filter(function (item) {
return item.country != 'TT'
})
After:
date,country,code,cnt
2014-01-01,US,500,1001
2014-01-02,CN,500,500
2014-01-02,US,200,1001
2014-01-01,CN,200,500
2014-01-01,CN,200,1001
groupby
Group by with some colomns, you can handler other colomns with your custom handler.
Before:
date,country,code,cnt
2014-01-01,US,500,1001
2014-01-02,CN,500,500
2014-01-02,US,200,1001
2014-01-01,CN,200,500
2014-01-01,CN,200,1001
Code:
d.groupby(['date'], function (res) {
res.successCount = 0
res.errorCount = 0
}, function (res, item) {
if (item.code == '200') {
res.successCount += parseInt(item.cnt)
} else {
res.errorCount += parseInt(item.cnt)
}
})
After:
date,successCount,errorCount
2014-01-01,1501,1001
2014-01-02,1001,500
pipeline
pipeline is a helper function for processing data one by one
Before:
date,successCount,errorCount
2014-01-01,1501,1001
2014-01-02,1001,500
Code:
d.pipeline(function (item) {
item.date += ' 00:00'
})
After:
date,successCount,errorCount
2014-01-01 00:00,1501,1001
2014-01-02 00:00,1001,500
expand
Before:
date,successCount,errorCount
2014-01-01 00:00,1501,1001
2014-01-02 00:00,1001,500
Code:
d.expand('index', ['1','2'], function (val, item) {
item.name = 'index_' + val
})
After:
date,successCount,errorCount,index,name
2014-01-01 00:00,1501,1001,1,index_1
2014-01-01 00:00,1501,1001,2,index_2
2014-01-02 00:00,1001,500,1,index_1
2014-01-02 00:00,1001,500,2,index_2
readDataFromFile
Read data from file.
d.readDataFromFile('./input.csv')
writeDataToFile
Write Data to file.
d.writeDataToFile('./output.csv')
getData
d.getData()
setData
d.setData([])
License
ISC