npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

data-encoder

v1.1.0

Published

Inspired by Pandas and sklearn.preprocessing libraries from Python, this package aims to provide data encoding options, useful in data-science and machine learning projects.

Downloads

30

Readme

data-encoder

https://www.npmjs.com/package/data-encoder

Inspired by Pandas and sklearn.preprocessing libraries from Python, this package aims to provide data encoding options, useful in data-science and machine learning projects.

Full documentation and source code - https://github.com/redsoul/data-encoder

Installation

npm install data-encoder --save

Usage and Examples

    const DataEncoder = require('data-encoder');
    const DataMappers = require('data-encoder/data-mappers');

One Hot

https://en.wikipedia.org/wiki/One-hot

    const OneHot = DataMappers.OneHot;

    const trainData = [
        {col1: 'a', col2: 1},
        {col1: 'b', col2: 2},
        {col1: 'c', col2: 3},
        {col1: 'a', col2: 4},
    ];
    const testData = [
        {col1: 'b', col2: 5},
    ];
    const mapping = {
        'col1': new OneHot(),
    }

    const dataEncoder = new DataEncoder();
    console.log(dataEncoder.fitTransform(trainData, mapping));
    /*
    {
        columns: [ 'col1_a', 'col1_b', 'col1_c', 'col2' ],
        values: [ [ 1, 0, 0, 1 ], [ 0, 1, 0, 2 ], [ 0, 0, 1, 3 ], [ 1, 0, 0, 4 ] ]
    }
    */

    console.log(dataEncoder.transform(testData, mapping));
    /*
    {
        columns: [ 'col1_a', 'col1_b', 'col1_c', 'col2' ],
        values: [ [ 0, 1, 0, 5 ] ]
    }
    */

Min-Max Scaller

https://en.wikipedia.org/wiki/Feature_scaling

    const MinMaxScaller = DataMappers.MinMaxScaller;

    const trainData = [
        {col1: 0, col2: 1},
        {col1: 5, col2: 2},
        {col1: 8, col2: 3},
        {col1: 15, col2: 4},
    ];
    const testData = [
        {col1: -3, col2: 6}, 
        {col1: 16, col2: 7}
    ];
    const mapping = {
        col1: new MinMaxScaller(),
    };

    const dataEncoder = new DataEncoder();
    console.log (dataEncoder.fitTransform (trainData, mapping));
    /*
    {
        columns: [ 'col1', 'col2' ],
        values: [ [ -1, 1 ], [ -0.33333333, 2 ], [ 0.06666667, 3 ], [ 1, 4 ] ]
    }
    */
    console.log (dataEncoder.transform (testData, mapping));
    /*
    {
        columns: [ 'col1', 'col2' ],
        values: [ [ -1.4, 6 ], [ 1.13333333, 7 ] ]
    }
    */

Integer and Float Parser

    const IntegerParser = DataMappers.IntegerParser;
    const FloatParser = DataMappers.FloatParser;

    const trainData = [
        {col1: '1.0001', col2: '1.0001'},
        {col1: 123.1234, col2: 123.1234},
        {col1: 10e1, col2: 0.1e1},
    ];
    const mapping = {
        col1: new IntegerParser (),
        col2: new FloatParser (),
    };

    const dataEncoder = new DataEncoder ();
    console.log (dataEncoder.fitTransform (trainData, mapping));
    /*
    {
        columns: [ 'col1', 'col2' ],
        values: [ [ 1, 1.0001 ], [ 123, 123.1234 ], [ 100, 1 ] ]
    }
    */

Custom Buckets

Buckets with custom boundaries

    const CustomBuckets = DataMappers.CustomBuckets;

    const trainData = [
        {col1: 0, col2: 1},
        {col1: 3, col2: 2},
        {col1: 4, col2: 3},
        {col1: 7, col2: 4},
    ];
    const testData = [
        {col1: 8, col2: 6}, 
        {col1: 10, col2: 7}
    ];
    const mapping = {
        col1: new CustomBuckets([4, 6, 8]),
    };

    const dataEncoder = new DataEncoder ();
    console.log (dataEncoder.fitTransform (trainData, mapping));
    /*
    {
        columns: [ 'col1', 'col2' ],
        values: [ [ 0, 1 ], [ 0, 2 ], [ 1, 3 ], [ 2, 4 ] ]
    }
    */
    console.log (dataEncoder.transform (testData, mapping));
    /*
    { 
        columns: [ 'col1', 'col2' ], 
        values: [ [ 3, 6 ], [ 3, 7 ] ] 
    }
    */

Equal Length Buckets

Put numbers into buckets that have equal-length ranges.

    const EqualLengthBuckets = DataMappers.EqualLengthBuckets;

    const trainData = [
        {col1: 0, col2: 1},
        {col1: 2, col2: 2},
        {col1: 4, col2: 3},
        {col1: 7, col2: 4},
        {col1: 10, col2: 5},
        {col1: 4, col2: 6},
        {col1: 6, col2: 7},
    ];
    const testData = [
        {col1: 8, col2: 6}, 
        {col1: 10, col2: 7}
    ];
    const mapping = {
        col1: new EqualLengthBuckets(3),
        col2: new EqualLengthBuckets(2),
    };

    const dataEncoder = new DataEncoder ();
    console.log (dataEncoder.fitTransform (trainData, mapping));
    /*
        {
            columns: [ 'col1', 'col2' ],
            values: [
                [ 0, 0 ], [ 1, 1 ],
                [ 1, 1 ], [ 1, 2 ],
                [ 2, 2 ], [ 1, 4 ],
                [ 1, 4 ]
            ]
        }
    */
    console.log (dataEncoder.transform (testData, mapping));
    /*
        { 
            columns: [ 'col1', 'col2' ], 
            values: [ [ 1, 4 ], [ 2, 4 ] ] 
        }
    */

Linear Buckets

Put numbers into buckets that have equal-size ranges.

    const LinearBuckets = DataMappers.LinearBuckets;

    const trainData = [
        {col1: 0, col2: 1},
        {col1: 2, col2: 2},
        {col1: 4, col2: 3},
        {col1: 7, col2: 4},
        {col1: 10, col2: 5},
        {col1: 4, col2: 6},
        {col1: 6, col2: 7},
    ];
    const mapping = {
        col1: new LinearBuckets (3),
        col2: new LinearBuckets (2),
    };

    const dataEncoder = new DataEncoder ();
    console.log (dataEncoder.fitTransform (trainData, mapping));