npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

cwise

v1.0.10

Published

Component-wise operations on ndarrays

Downloads

101,439

Readme

cwise

This library can be used to generate cache efficient map/reduce operations for ndarrays.

build status

Examples

For brevity, we will assume the following precedes each example:

//Import libraries
var cwise = require("cwise")
  , ndarray = require("ndarray")

Adding two arrays

The array equivalent of +=:

//Create operation
var addeq = cwise({
    args: ["array", "array"],
    body: function(a, b) {
      a += b
    }
  })

//Create two 2D arrays
var X = ndarray(new Float32Array(128*128), [128,128])
var Y = ndarray(new Float32Array(128*128), [128,128])

//Add them together
addeq(X, Y)

Formally, you can think of addeq(X,Y) as being something like the following for-loop, except optimized with respect to the dimension and order of X and Y:

for(var i=0; i<X.shape[0]; ++i) {
  for(var j=0; j<X.shape[1]; ++j) {
    X.set(i,j, X.get(i,j) + Y.get(i,j))
  }
}

Multiply an array with a scalar

var muls = cwise({
  args: ["array", "scalar"],
  body: function(a, s) {
    a *= s
  }
})

//Example usage:
muls(array, 2.0)

Initialize an array with a grid with the first index

var mgrid = cwise({
  args: ["index", "array"],
  body: function(i, a) {
    a = i[0]
  }
})

//Example usage:
var X = mgrid(ndarray(new Float32Array(128)))

Compute 2D vector norms using blocks

var norm2D = cwise({
  args: ["array", {blockIndices: -1}],
  body: function(o, i) {
    o = Math.sqrt(i[0]*i[0] + i[1]*i[1])
  }
})

//Example usage:
var o = ndarray([0, 0, 0], [3])
norm2D(o, ndarray([1, 2, 3, 4, 5, 6], [3,2]))
// o.data == [ 2.23606797749979, 5, 7.810249675906654 ]

Note that in the above, i is not an actual Array, the indexing notation is just syntactic sugar.

Apply a stencil to an array

var laplacian = cwise({
  args:["array", "array", {offset:[0,1], array:1}, {offset:[0,-1], array:1}, {offset:[1,0], array:1}, {offset:[-1,0], array:1}],
  body:function(a, c, n, s, e, w) {
    a = 0.25 * (n + s + e + w) - c
  }
})

laplacian(next, prev)

Compute the sum of all the elements in an array

var sum = cwise({
  args: ["array"],
  pre: function() {
    this.sum = 0
  },
  body: function(a) {
    this.sum += a
  },
  post: function() {
    return this.sum
  }
})
  
//Usage:
s = sum(array)

Note that variables stored in this are common to all three code blocks. Also note that one should not treat this as an actual object (for example, one should not attempt to return this).

Check if any element is set

var any = cwise({
  args: ["array"],
  body: function(a) {
    if(a) {
      return true
    }
  },
  post: function() {
    return false
  }
})

//Usage
if(any(array)) {
  // ...
}

Compute the index of the maximum element of an array:

var argmin = cwise({
  args: ["index", "array"],
  pre: function(index) {
    this.min_v = Number.POSITIVE_INFINITY
    this.min_index = index.slice(0)
  },
  body: function(index, a) {
    if(a < this.min_v) {
      this.min_v = a
      for(var i=0; i<index.length; ++i) {
        this.min_index[i] = index[i]
      }
    }
  },
  post: function() {
    return this.min_index
  }
})

//Usage:
argmin(X)

Install

Install using npm:

npm install cwise

API

require("cwise")(user_args)

To use the library, you pass it an object with the following fields:

  • args: (Required) An array describing the type of the arguments passed to the body. These may be one of the following:
    • "array": An ndarray-type argument
    • "scalar": A globally broadcasted scalar argument
    • "index": (Hidden) An array representing the current index of the element being processed. Initially [0,0,...] in the pre block and set to some undefined value in the post block.
    • "shape": (Hidden) An array representing the shape of the arrays being processed
    • An object representing a "blocked" array (for example a colour image, an array of matrices, etc.):
      • blockIndices The number of indices (from the front of the array shape) to expose in the body (rather than iterating over them). Negative integers take indices from the back of the array shape.
    • (Hidden) An object containing two properties representing an offset pointer from an array argument. Note that cwise does not implement any boundary conditions.
      • offset An array representing the relative offset of the object
      • array The index of an array parameter
  • pre: A function to be executed before starting the loop
  • body: (Required) A function that gets applied to each element of the input arrays
  • post: Executed when loop completes
  • printCode: If this flag is set, then log all generated code
  • blockSize: The size of a block (default 32)
  • funcName: The name to give to the generated procedure for debugging/profiling purposes. (Default is body.name||"cwise")

The result is a procedure that you can call which executes these methods along the following lines:

function(a0, a1, ...) {
  pre()
  for(var i=0; i<a0.shape[0]; ++i) {
    for(var j=0; j<a0.shape[1]; ++j) {
      ...
      
          body(a0[i,j,...], a1[i,j,...], ... )
    }
  }
  post()
}

Notes

  • To pass variables between the pre/body/post, use this.*
  • The order in which variables get visited depends on the stride ordering if the input arrays. In general it is not safe to assume that elements get visited (co)lexicographically.
  • If no return statement is specified, the first ndarray argument is returned
  • All input arrays must have the same shape. If not, then the library will throw an error

As a browserify transform

If bundle size is an issue for you, it is possible to use cwise as a browserify transform, thus avoiding the potentially large parser dependencies. To do this, add the following lines to your package.json:

//Contents of package.json
{
    // ...

    "browserify": {
      "transform": [ "cwise" ]
    }

    // ...
}

Then when you use the module with browserify, only the cwise-compile submodule will get loaded into your script instead of all of esprima. Note that this step is optional and the library will still work in the browser even if you don't use a transform.

FAQ

Is it fast?

Yes

How does it work?

You can think of cwise as a type of macro language on top of JavaScript. Internally, cwise uses node-falafel to parse the functions you give it and sanitize their arguments. At run time, code for each array operation is generated lazily depending on the ordering and stride of the input arrays so that you get optimal cache performance. These compiled functions are then memoized for future calls to the same function. As a result, you should reuse array operations as much as possible to avoid wasting time and memory regenerating common functions.

License

(c) 2013 Mikola Lysenko. MIT License