npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

cwait

v1.1.2

Published

Limit number of promises running in parallel

Downloads

50,363

Readme

cwait

build status npm monthly downloads npm version

cwait provides a queue handler (TaskQueue) and a wrapper (Task) for promises, to limit how many are being resolved simultaneously. It can wrap any ES6-compatible promises. This allows for example limiting simultaneous downloads with minor changes to existing code. Just wrap your existing "download finished" promise and use it as before.

This is a tiny library with a single dependency, usable both in browsers and Node.js.

Usage

Create a new TaskQueue passing it whatever Promise constructor you're using (ES6, Bluebird, some other shim...) and the maximum number of promise-returning functions to run concurrently. Then just call queue.wrap(<function>) instead of <function> to limit simultaneous execution.

Simple Node.js example:

import * as Promise from 'bluebird';
import {TaskQueue} from 'cwait';

/** Queue allowing 3 concurrent function calls. */
var queue = new TaskQueue(Promise, 3);

Promise.map(list, download); // Download all listed files simultaneously.

Promise.map(list, queue.wrap(download)); // Download 3 files at a time.

See test/test.ts for some runnable code or run it like this:

git clone https://github.com/charto/cwait.git
cd cwait
npm install
npm test

Recursion

Recursive loops that run in parallel require special care. Nested concurrency-limited calls (that are not tail-recursive) must be wrapped in queue.unblock().

Here's a simple example that fails:

var queue = new (require('cwait').TaskQueue)(Promise, 3);

var rec = queue.wrap(function(n) {
    console.log(n);
    return(n && Promise.resolve(rec(n - 1)));
});

rec(10);

It only prints numbers 10, 9 and 8. More calls don't get scheduled because there are already 3 promises pending. For example Node.js exits immediately afterwards because the program is not blocked waiting for any system calls.

Passing a promise to queue.unblock(promise) tells queue that the current function will wait for promise to resolve before continuing. One additional concurrent function is then allowed until the promise resolves.

Be careful not to call queue.unblock() more than once (concurrently) from inside a wrapped function! Otherwise the queue may permit more simultaneous tasks than the intended limit.

Here is a corrected example:

var queue = new (require('cwait').TaskQueue)(Promise, 3);

var rec = queue.wrap(function(n) {
    console.log(n);
    return(n && queue.unblock(Promise.resolve(rec(n - 1))));
});

rec(10);

Advanced example with recursion

The following code recursively calculates the 10th Fibonacci number (55) running 3 recursive steps in parallel, each with an artificial 10-millisecond delay.

At the end, it prints the result (55) and the number of concurrent calls (3).

var queue = new (require('cwait').TaskQueue)(Promise, 3);

var maxRunning = 0;
var running = 0;
var delay = 10;

var fib = queue.wrap(function(n) {
    // "Calculation" begins. Track maximum concurrent executions.
    if(++running > maxRunning) maxRunning = running;

    return(new Promise(function(resolve, reject) {
        setTimeout(function() {
            // "Calculation" ends.
            --running;

            // Each Fibonacci number is the sum of the previous two, except
            // the first ones are 0, 1 (starting from the 0th number).
            // Calculate them in parallel and unblock the queue until ready.

            resolve(n < 2 ? n :
                queue.unblock(Promise.all([
                    fib(n - 1),
                    fib(n - 2)
                ])).then(function(r) {
                    // Sum results from parallel recursion.
                    return(r[0] + r[1]);
                })
            );
        }, delay);
    }));
});

fib(10).then(function(x) {
    console.log('Result: ' + x);
    console.log('Concurrency: ' + maxRunning);
});

API

Docs generated using docts

Class Task

Task wraps a promise, delaying it until some resource gets less busy.
Source code: <>

Methods:

new( ) Task<PromiseType> <>
 ▪ func () => PromiseType
 ▪ Promise PromisyClass<PromiseType>
.delay( ) PromiseType <>
Wrap task result in a new promise so it can be resolved later.
.resume( ) PromiseType <>
Start the task and call onFinish when done.
 ▪ onFinish () => void

Class TaskQueue

Source code: <>

Methods:

new( ) TaskQueue<PromiseType> <>
 ▪ Promise PromisyClass<PromiseType>
 ▪ concurrency number
.add( ) PromiseType <>
Add a new task to the queue.
It will start when the number of other concurrent tasks is low enough.
 ▪ func () => PromiseType
.unblock( ) PromiseType <>
Consider current function idle until promise resolves.
Useful for making recursive calls.
 ▪ promise PromiseType
.wrap( ) (...args: any[]) => PromiseType <>
Wrap a function returning a promise, so that before running
it waits until concurrent invocations are below this queue's limit.
 ▪ func (...args: any[]) => PromiseType
 ▫ thisObject? any

Properties:

.concurrency number
Number of promises allowed to resolve concurrently.

License

The MIT License

Copyright (c) 2015-2017 BusFaster Ltd