npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

csk-async

v0.4.1

Published

DUMMY PACKAGE: only encapsulate the 'async-kit' replacement package - A simple and powerful async abstraction lib for easily writing Node.js code.

Downloads

23

Readme

The name of this package has changed! It is now known as async-kit!

Please update your dependencies!

You can find the new package on the npm registry, or on Github.

This package is now a dummy package: it only contains a dependency to the new package.

Async Kit

A simple and powerful async abstraction layer lib to easily write Node.js code.

This is the new name for the former CSK Async package.

  • License: MIT
  • Current status: beta
  • Platform: Node.js only (browser support is planned)

While inspired in some way by caolan/async, Async Kit uses a completely different approach.

Rather than having a whole bunch of specific functions, this lib provides a generic way to solve async code flow. So anything that can be done by caolan/async lib can be converted to Async Kit, but the reverse is not always true.

Using natural syntax really easy to become familiar with, you will be able to code great things effortlessly, without cumbersome callback hell, and without coding again and again the same async pattern and logic.

Please read this doc on Github, npmjs.org truncate it.

Quick example

async.series( [
	function( callback ) {
		letsConnectToDatabase( callback ) ;
	} ,
	function( callback ) {
		letsQueryTheDatabase( callback ) ;
	} ,
	function( callback ) {
		doMoreQueries( callback ) ;
	}
] )
.exec( function( error , results ) {
	if ( error ) { console.log( 'Doh!' ) ; }
	else { console.log( 'Yay! Done!' ) ; }
} ) ;

This small example prepares an async job's list and executes it.

All jobs are executed in series, one after one.

Each callback works the Node.js way, the first argument is always the error argument.

If one job fails (ie it triggers its callback with an error or any truthy value), all remaining jobs are skipped and the exec()'s callback is instantly called with that error.

When every jobs are finished, the exec()'s callback is called, the results argument contains an array of the arguments passed by each job to its callback.

Features

Code flow

Modifier

Misc

Install

Use Node Package Manager:

npm install csk-async

Plan stage & exec stage concept

This is an important concept to understand when using this lib: there are two stages to perform an async flow.

In the first stage, you define the plan. All plan definition returns an async.Plan object.

Then you can .exec() your plan as many time as you want. All the exec method family returns an execContext object. The first time an async.Plan is .exec(), it becomes locked forever: you cannot modify it anymore.

The example above becomes:

// Plan stage, jobs' definition
var plan = async.series( [
	function( callback ) {
		letsConnectToDatabase( callback ) ;
	} ,
	function( callback ) {
		letsQueryTheDatabase( callback ) ;
	} ,
	function( callback ) {
		doMoreQueries( callback ) ;
	}
] ) ;

// Change the plan, each job should terminate within 200ms
plan.timeout( 200 ) ;

// Exec stage
plan.exec( function( error , results ) {
	if ( error ) { console.log( 'Doh!' ) ; }
	else { console.log( 'Yay! Done!' ) ; }
} ) ;

plan.exec( function( error , results ) {
	if ( error ) { console.log( 'Doh x2!' ) ; }
	else { console.log( 'Yay! Again!' ) ; }
} ) ;

// No effect! Plan cannot be modified anymore!
plan.timeout( 200 ) ;

Callbacks & the error argument

In most case, callbacks work in the Node.js fashion, except explicitly expressed otherwise. The callback should always be called with arguments in this order:

callback( [error] , [argument1] , [argument2] , ... ) ;

That's it: the first argument, if present, is always assumed to be the error argument.

Async Kit will assume that something is wrong with a job if it get ANY truthy value as the error argument, weither it is an instanceof of Error, true, 'my error message', or any expression evaluated to true. If you are unsure what are truthy and falsy values, check this out.

Common use cases

Perform asynchronous database queries

Use case: this is probably the most common use case for any website, we have to perform a series of async query, each query should be sent after the previous one succeed.

async.waterfall( [
	function getUserByLoginAndPassword( login , password , callback ) {
		dbUserCollection.findOne( { login: login, password: password } , callback ) ;
	} ,
	
	function getUserPhoto( userDocument , callback ) {
		dbPhotoCollection.findOne( { _id: userDocument.photoID } , callback ) ;
	}
] )
.timeout( 200 )
.then( function( photoDocument ) {
	httpResponse.writeHead( 200 , { 'Content-Type' : 'image/png' } ) ;
	httpResponse.write( photoDocument.rawData ) ;
	httpResponse.end() ;
} )
.catch( function( error ) {
	httpResponse.writeHead( 404 , { 'Content-Type' : 'text/plain' } ) ;
	httpResponse.write( '404 - Not found.' ) ;
	httpResponse.end() ;
} )
.execArgs( '[email protected]' , 'god' ) ;

Explanation:

  • async.waterfall() declare a job list in waterfall mode, when one job finish, it pass arguments to the next job
  • dbUserCollection.findOne() & dbPhotoCollection.findOne are some kind of MongoDB pseudo-code, they return a document from the collection
  • getUserPhoto() receive a document of the authenticated user
  • timeout( 200 ) assume each job should perform within 200ms, if a job hit the time limit, it works as if the job itself passed an error to its callback, here .catch() is immediately triggered if it happens
  • .then() declare a then callback in the Plan itself, it will be triggered if we manage to authenticate the user and get its photo
  • .catch() declare a catch callback in the Plan itself, it will be triggered if a job fails
  • .execArgs() is used when you do not want to pass callback to .exec()-like function, since by default .exec() assume than its last argument is the finally callback, so since we are in waterfall mode, every arguments passed to execArgs() are passed only to the first job

You can chain as many queries as you want, without burying them deeper and deeper in nested callback hell.

Get informations on various mirror URL as fast as possible

Use case: we want to get some contents (JSON, HTML, RSS, etc), many mirrors are available but we don't want to try them one at a time, we want to try them all at once and finish as soon as possible, when the first non-error response is received.

async.race( [ url1 , url2 , url3 , url4 ] )
.using( function( url , callback ) {
	getContentFromUrl( url , callback ) ;
} )
.then( function( contents ) {
	doSomethingWithContent( contents ) ;
} )
.catch( function( error ) {
	console.log( "Cannot get contents from any mirror" ) ;
} )
.exec() ;

Explanation:

  • async.race() declare a job list of four racing elements to process, in parallel mode, triggering callback when the first non-error job finished
  • .using() declare the function used to process them (iterator-like, if it means anything in a parallel context)
  • getContentFromUrl() is a user-defined function that take an URL and a callback, try to get contents from that URL and call its callback the Node.js way: callback( error , contents )
  • .then() declare a then callback in the Plan itself, it will be triggered if we get what we want
  • doSomethingWithContent() is a user-defined function, that process the contents
  • .catch() declare a catch callback in the Plan itself, it will be triggered if ALL jobs have failed
  • here .exec() is called without argument, so it executes the Plan with no callback of its own: if we do not want to re-use the Plan it improves readability to use .then() and .catch() directly in the Plan definition part.

Async foreach

Use case: we have an array, we want to iterate it but there are some async code in the iterator, and we really want that each element to be processed one at a time. The native javascript myArray.forEach() would parallelize the async part even if we don't want.

async.foreach( myArray , function( element , callback ) {
	doSomethingAsyncWithElement( element , callback ) ;
} )
.exec( function( error ) {
	console.log( "Finished!" ) ;
} ) ;

Explanation:

  • async.foreach( myArray , function ) define a job list with myArray, and specify an iterator function
  • doSomethingAsyncWithElement() should trigger its callback when the job is finished
  • When all element have been processed, the .exec()'s callback is triggered, as usual

You can as well add a .parallel() before .exec(), you still have the advantage versus native forEach() of having a general callback triggered when everything is asynchronously done.

Make

To make it work: make install

To build any buildable things: make

To run tests: make test

To rebuild documentation: make doc

To clean everything that can be automatically regenerated: make clean

Reference

Do family factories

They create async.Plan object and set up the job's list.

Note that an async.Plan do not perform anything until its .exec() method is called (see Class async.Plan for details). The following informations describe what happend when the plan is executed.

By default, jobs are processed one at a time.

If an error occurs, no new jobs will be processed.

Jobs should trigger their callback the Node.js way: callback( error , [arg1] , [arg2] , ... ).

The finally callbacks (see below) are triggered when the first error occurs or when all jobs are done.

Note: all factories below are described relative to this point of reference. Only differences will be reported.

async.do( jobsList )

  • jobsList Array or Object

This is the most generic factory, with default behaviour, with no further limitation.

See Do family factories above.

async.series( jobsList )

  • jobsList Array or Object

Set up a job's list to be processed in series.

Calling .parallel() on it has no effect, it will process jobs one at a time anyway.

async.parallel( jobsList )

  • jobsList Array or Object

Set up a job's list to be processed in parallel. The parallel limit is set to Infinity by default.

async.race( jobsList )

  • jobsList Array or Object

Set up a job's list to be processed in parallel. The parallel limit is set to Infinity by default.

The whole jobs processing aborts when the first job finish without error.

Jobs processing continues on error.

Note that async.race( jobsList ) is the same than async.parallel( jobsList ).fatal( false ).race().

async.waterfall( jobsList )

  • jobsList Array or Object

Set up a job's list to be processed in series, in waterfall mode.

Each job is called with the previous job output as arguments.

By default, the .exec() method accept arguments to pass to the first job.

By default, the error argument is not transmitted, see .transmitError() for details.

Only the last job pass its result to finallyCallback, thenCallback etc... See .lastJobOnly() for details.

Calling .parallel() on it has no effect, it will process jobs one at a time anyway.

Example:

async.waterfall( [
	function( str , callback ) {
		// str equals 'oh', passed by .exec()'s first argument
		callback( undefined , str + ' my' ) ;
		// undefined is the error argument, it is not transmitted to the next job by default
	} ,
	function( str , callback ) {
		// str equals 'oh my', passed by the previous job
		callback( undefined , str + ' wonderful' ) ;
		// undefined is the error argument, it is not transmitted to the next job by default
	} ,
	function( str , callback ) {
		// str equals 'oh my wonderful', passed by the previous job
		callback( undefined , str + ' result' ) ;
	}
] )
.exec( 'oh' , function( error , results ) {
	// output 'oh my wonderful result'
	console.log( results ) ;
} ) ;

Any number of arguments can be used. The previous example can become something like this:

async.waterfall( [
	function( str1 , str2 , str3 , callback ) {
		// str1 equals 'Hello', passed by .exec()'s first argument
		// str2 equals 'world', passed by .exec()'s second argument
		// str3 equals 'this', passed by .exec()'s third argument
		callback( undefined , str1 + ' ' + str2 + ' ' + str3 + ' is' ) ;
	} ,
	function( str , callback ) {
		// str equals 'Hello world, this is', passed by the previous job
		callback( undefined , str + ' my' , 'wonderful' ) ;
	} ,
	function( str1 , str2 , callback ) {
		// str1 equals 'Hello world, this is my', passed by the previous job
		// str2 equals 'wonderful', passed by the previous job
		callback( undefined , str1 + ' ' + str2 + ' result' ) ;
	}
] )
.exec( 'Hello' , 'world,' , 'this' , function( error , results ) {
	// output 'Hello world, this is my wonderful result'
	console.log( results ) ;
} ) ;

async.foreach( container , iterator )

  • container Array or Object to iterate
  • iterator Function( element , [key] , [container] , callback ) where:
    • element mixed the current array element or object's property value
    • key Number or String the current key (index for array, property name for object)
    • container Array or Object, this is the original container
    • callback Function( error , [arg1] , [arg2] , ... ) a node-style callback to trigger on completion

It performs an async foreach, iterating container, using iterator.

Depending on iterator.length (the number of arguments the user-provided function accept), the arguments passed to iterator will be ( element , callback ), ( element , key , callback ), or ( element , key , container , callback ) where element is the current element, key is the current key (the current index if container is an Array, or the current property's name if container is an object), container is the original container, and callback is the completion's callback.

By default, elements are performed one at a time, in series.

If the iterator fails for one element, it will continue processing others elements anyway.

Note that async.foreach( container , iterator ) is equal to async.do( container ).iterator( iterator ).

Example:

var myArray = [ 'one' , 'two' , 'three' ] ;

async.foreach( myArray , function( key , element , callback ) {
	// Called three time, with element's value: 'one', then 'two', then 'three'
	doSomethingAsyncWithElement( element , callback ) ;
} )
.exec( function( error , results ) {
	thingsToDoWhenFinished() ;
} ) ;

async.map( container , iterator )

  • container Array or Object to iterate
  • iterator Function( element , [key] , [container] , callback ) where:
    • element mixed the current array element or object's property value
    • key Number or String the current key (index for array, property name for object)
    • container Array or Object, this is the original container
    • callback Function( error , [arg1] , [arg2] , ... ) a node-style callback to trigger on completion

It performs an async map, iterating container, using iterator. An async map takes an array and produces a new array, each value in the input array is mapped into the output array, preserving indexes. If an object is provided instead of an array, it produces a new object, preserving keys.

Depending on iterator.length (the number of arguments the user-provided function accept), the arguments passed to iterator will be ( element , callback ), ( element , key , callback ), or ( element , key , container , callback ) where element is the current element, key is the current key (the current index if container is an Array, or the current property's name if container is an object), container is the original container, and callback is the completion's callback.

By default, elements are performed in parallel mode.

If the iterator fails for one element, it will continue processing others elements anyway.

The results (see example below) directly map the container, like .mapping1to1() do.

Note that async.map( container , iterator ) is equal to async.do( container ).iterator( iterator ).mapping1to1().

Example:

var myArray = [ 'my' , 'wonderful' , 'result' ] ;

async.map( myArray , function( element , callback ) {
	
	setTimeout( function() {
		callback( undefined , element.length ) ;
	} , 0 ) ;
} )
.exec( function( error , results ) {
	// we expect results to be equal to [ 2, 9, 6 ]
	expect( results ).to.be.eql( [ 2, 9, 6 ] ) ;
} ) ;

async.reduce( container , [aggregatedValue] , iterator )

  • container Array or Object to iterate
  • aggregatedValue mixed the initial default reduced (aggregated) value
  • iterator Function( aggregatedValue , element , [key] , [container] , callback ) where:
    • aggregatedValue mixed the current reduced value
    • element mixed the current array element or object's property value
    • key Number or String the current key (index for array, property name for object)
    • container Array or Object, this is the original container
    • callback Function( error , newAggregatedValue , [arg1] , [arg2] , ... ) a node-style callback to trigger on completion, where:
      • newAggregatedValue mixed is the new reduced value that will be passed to the next iteration

It performs an async reduce, iterating container, using iterator. An async reduce takes an array (or an object), and iterate it to produce a single reduced value (though actually this single value can be anything we like, even an array or object).

Depending on iterator.length (the number of arguments the user-provided function accept), the arguments passed to iterator will be ( aggregatedValue , element , callback ), ( aggregatedValue , element , key , callback ), or ( aggregatedValue , element , key , container , callback ), where aggregatedValue is the current reduced value, element is the current element, key is the current key (the current index if container is an Array, or the current property's name if container is an object), container is the original container, and callback is the completion's callback.

Each element is processed one at a time, in series. Calling .parallel() on this async.Plan has no effect, it will process jobs one at a time anyway.

If the iterator fails for one element, the whole process aborts and fails.

If you do *NOT* provide a default aggregatedValue in the async.Plan, then the .exec() method require an initial aggregatedValue as its first argument.

Note that async.reduce( initialAggregatedValue , container , iterator ) is equal to async.do( container ).iterator( iterator ).aggregator( true , true , initialAggregatedValue ).

Example:

var myArray = [ 'my' , 'wonderful' , 'result' ] ;

var plan = async.reduce( myArray , function( aggregate , element , callback ) {
	
	setTimeout( function() {
		// Asyncly calculate the sum of the length
		callback( undefined , aggregate + element.length ) ;
	} , 0 ) ;
} )
// No aggregatedValue is provided in the async.Plan creation,
// so the first argument of exec() must be the initial aggregatedValue.
.exec( 0 , function( error , results ) {
	// we expect results to be equal to 17
	expect( results ).to.be.eql( 17 ) ;
} ) ;

async.while( whileCallback ).do( jobsList )

  • whileCallback Function( error , results , logicCallback ) triggered for checking if we have to continue or not, where:
    • error mixed any truthy means error
    • results Array or Object that maps the jobsList
    • logicCallback Function( [error] , loopAgain ) where:
      • error mixed any truthy means error
      • loopAgain Boolean anything else is considered either truthy or falsy
  • jobsList Array or Object

It performs an async while loop. This is equivalent to javascript code:

while ( expression ) {
	// do something
}

Unlike others factories, in order to mimic native language syntax, this factory accepts a whileCallback rather than a job's list. So you have to use the async.Plan's .do() method to pass the job's list.

Async while loops behave diffently than other async.Plan in various way:

  • it first performs an async conditional check, if the outcome is falsy, then the execution is immediately aborted
  • it performs jobs, just the way other async.Plan do, but:
  • when everything is done, it performs again a conditional check, and if its outcome is truthy, it loops again (and again, etc...)
  • when the outcome of the conditional check is falsy, callbacks (finally, then, catch, else) are triggered with the results of the last iteration only (if any), so older iteration's results are lost unless checked and used in the whileCallback.

Example:

async.while( function( error , results , logicCallback ) {
	// If doMoreWorksFunction() triggers its callback demanding another loop...
	logicCallback( results.moreWorks[ 1 ] === 'loop' ) ;
} )
.do( {
	preliminaries: doPreliminariesFunction ,
	works: doWorksFunction ,
	moreWorks: doMoreWorksFunction
} ) 
.exec( function( error , results ) {
	// 'results' contains only the results of the last loop
	thingsToDoWhenFinished() ;
} ) ;

async.do( jobsList ).while( whileCallback )

  • jobsList Array or Object
  • whileCallback Function( error , results , logicCallback ) triggered for checking if we have to continue or not, where:
    • error mixed any truthy means error
    • results Array or Object that maps the jobsList
    • logicCallback Function( [error] , loopAgain ) where:
      • error mixed any truthy means error
      • loopAgain Boolean anything else is considered either truthy or falsy

It performs an async do-while loop.

It works exactly the same as async.while().do(), except that, by default, the whileCallback is triggered at the end of the process rather than at the beginning. This is equivalent to javascript code:

do {
	// do something
} while ( expression )

Conditional family factories

The following factories instanciate async.Plan of the conditional family. There are few differencies with async.Plan of the do family.

Jobs have three type of outcome: true, false and error.

Jobs should trigger their callback this way: callback( [error] , result ). In this case, you are not forced to pass the error argument first. However, if you pass only one argument, it will be assumed to be an error only if it is an instance of Error.

If an error occurs, it will stop processing any new jobs by default. If true or false is the outcome, then it all depends on the type of conditional.

There are two mode: boolean or not. When boolean mode is used, any non-error outcome are cast to a boolean value. In non-boolean mode, the final outcome is simply the outcome of the last processed job. The non-boolean mode is in line with the way javascript handle expression like myVar1 && myVar2 (it will produce myVar1 if myVar1 is falsy, else myVar2).

By default, jobs are performed in series, one at a time. It is possible to parallelize jobs processing, but it can change the final outcome in non-boolean mode, though the truthness of that outcome remains unchanged.

async.and( jobsList )

  • jobsList Array or Object

It performs an async conditional AND, so it keeps processing jobs as long as the outcome is truthy.

By default, it uses the non-boolean mode, so the final outcome is the outcome of the last job.

async.or( jobsList )

  • jobsList Array or Object

It performs an async conditional OR, so it keeps processing jobs as long as the outcome is falsy.

By default, it uses the non-boolean mode, so the final outcome is the outcome of the last job.

async.if.and( jobsList )

  • jobsList Array or Object

It performs an async conditional AND, so it keeps processing jobs as long as the outcome is truthy.

By default, it uses the boolean mode, so the final outcome is a boolean.

async.if.or( jobsList )

  • jobsList Array or Object

It performs an async conditional OR, so it keeps processing jobs as long as the outcome is falsy.

By default, it uses the boolean mode, so the final outcome is a boolean.

Nested condition

We can create nested conditional statement just like in native language. See the following example:

async.if.and( [
	ifSomeConditionsAreMetAnd
	async.or( [
		ifSomeMoreConditionsAreMet
		orIfSomeAlternativeConditionsAreMet
	] )
] )
.then( function() {
	// Do something if the async conditional statement is true
} )
.else( function() {
	// Do something if the async conditional statement is false
} )
.exec() ;

ifSomeConditionsAreMetAnd, ifSomeMoreConditionsAreMet and orIfSomeAlternativeConditionsAreMet are user functions asyncly checking if some conditions are met or not.

This works because if a job is an instance of async.Plan, the .exec() method will be used as a callback.

We can use as many nested async conditional as we want.

Class async.Plan

Each factory come with a default set of behaviour. Almost all behaviours can be modified by methods.

However, modifier methods have no effect as soon as an .exec() family method is used on the current async.Plan.

.do( jobsList )

  • jobsList Array or Object

It set the job's list. Most of time, the job's list is already passed as the first argument of a factory, so we don't have to use this method.

However, it is used in the async.while().do() scheme, to mimic common programming language syntax.

.parallel( [parallelLimit] )

  • parallelLimit Number, if omited or true: Infinity, if false: 1

It set the parallel limit or concurrency limit. This is the number of async jobs that can be running/pending at a time.

Using a parallel limit value of 1, jobs are processed one at a time, like async.series() factory does.

Using a parallel limit value of Infinity, jobs are processed all at once (if they are async), like async.parallel() factory does.

Using a parellel limit value of 3, for example, the first three jobs will start at once, when one jobs triggers its callback the fourth job starts, when another job triggers its callback then the fifth job starts, and so on...

.race( raceMode )

  • raceMode Boolean, if omited: true

Set the race mode.

In race mode, the whole jobs processing aborts when the first job finish without error.

See async.race() factory.

.waterfall( waterfallMode )

  • waterfallMode Boolean, if omited: true

Set the waterfall mode.

In waterfall mode, each job is called with the previous job output as arguments, and the first job receives arguments directly from .exec().

See async.waterfall() factory.

.while( whileCallback , whileActionBefore )

  • whileCallback Function( error , results , logicCallback ) triggered for checking if we have to continue or not, where:
    • error mixed any truthy means error
    • results Array or Object that maps the jobsList
    • logicCallback Function( [error] , loopAgain ) where:
      • error mixed any truthy means error
      • loopAgain Boolean anything else is considered either truthy or falsy
  • whileActionBefore Boolean, if omited: false

Set a while loop mode.

The argument whileActionBefore is used to define if the condition should be evaluated at the begining of the loop or at the end of the loop.

See async.while().do() (if whileActionBefore is true) or async.do().while() (if whileActionBefore is false) for details.

.repeat( n )

  • n Number

Set loop mode, the job's list will run n times.

Actually this is a shortcut, it simply set up a while loop with a trivial callback. Avoid to reinvent the wheel again and again.

See .while() for details.

.fatal( [errorsAreFatal] )

  • errorsAreFatal Boolean, if omitted: true

If errors are fatal (the default in most factories), then whenever a job fails the whole process is aborted immediately.

If error are not fatal, others jobs will be processed even if some errors occurs.

.boolean( [castToBoolean] )

  • castToBoolean Boolean, if omitted: true

This only have effects in Conditional family async.Plan.

If castToBoolean is true, the outcome of jobs and the final outcome is always true or false: this is what happens with async.if.and() and async.if.or() factories by default.

If castToBoolean is false, the outcome of each job remains unchanged, and the final outcome is the outcome of the last job: this is what happens with async.and() and async.or() factories by default.

.transmitError( [transmit] )

  • transmit Boolean, if omitted: true

This only have effects in waterfall mode, using async.waterfall() factory.

If transmit is true, each job received the error argument of the previous job.

If transmit is false, the error argument pass by the previous job is not transmitted.

Example with .transmitError:

async.waterfall( [
	function( str , callback ) {
		// str equals 'oh', passed by .exec()'s first argument
		callback( undefined , str + ' my' ) ;
	} ,
	function( lastError , str , callback ) {
		// lastError equals undefined
		// str equals 'oh my', passed by the previous job
		callback( new Error() , str + ' wonderful' ) ;
	} ,
	function( lastError , str , callback ) {
		// lastError is now an instance of Error
		// str equals 'oh my wonderful', passed by the previous job
		callback( undefined , str + ' result' ) ;
	}
] )
.transmitError( true )
.fatal( false )
.exec( 'oh' , function( error , results ) {
	// output 'oh my wonderful result'
	console.log( results ) ;
} ) ;

.timeout( [jobsTimeout] )

  • jobsTimeout undefined or Number (in ms), if omited: undefined

Set up a time limit for each job. If a job doesn't trigger its callback within this time, its callback is triggered anyway automatically with an error: new Error( 'Timeout' ).

If the job triggers its callback later, it will be ignored.

It comes in handy in any network or service dependant async jobs, like database queries, HTTP request, and so on.

Also this is IMPORTANT to understand that this is the csk-async lib who is responsible for the timeout to kick in: the user code is still in execution, it may be pending, waiting for I/O to perform some other tasks. The timeout feature give us the chance to be sure that our callback get triggered within some time limit, it doesn't interupt the job in any way.

.retry( [maxRetry] , [baseTimeout] , [multiply] , [maxTimeout] )

  • maxRetry Number, it doesn't update if omited
  • baseTimeout Number in ms, it doesn't update if omited
  • multiply Number, it doesn't update if omited
  • maxTimeout Number, in ms, it doesn't update if omited

This modifier allows jobs in error to be retried.

This is a very nice feature when dealing with other servers or external services, because they could be unavailable at any time, but we don't want important tasks to fail.

It allows fine tuning:

  • maxRetry: the maximum number of times a job should be retried, before giving up with the last error
  • baseTimeout: the base timeout in ms before retrying, this is the timeout before the first retry
  • multiply: the timeout before retrying is multiplied by this value for each new retry
  • maxTimeout: the maximum timeout in ms, it will never be more despite the increasing retries with a multiply value > 1.

For example, assuming maxRetry: 6, baseTimeout: 100, multiply: 1.5, maxTimeout: 500, we will get for each retry the timeout value:

  • 1st - 100ms
  • 2nd - 150ms (=100*1.5)
  • 3rd - 225ms (=150*1.5)
  • 4th - 338ms (=225*1.5)
  • 5th - 500ms (capped by maxTimeout)
  • 6th - 500ms (capped by maxTimeout)

A good practice is to specify a low baseTimeout, around 10ms, and a high multiply value, at least 2. This way, things keep reactive when a sporadic error occurs, but if something is really wrong with some of our servers, we didn't flood them to death, we give them a chance to recover.

If maxRetry is high, we may consider using a maxTimeout value, between 10 seconds and 2 minutes. This could be really bad if some actions are retried few hours or few days later, totally out of context.

By the way, those are general guidance, it all depends on the criticy of the tasks, wheither it involves local, lan, vlan or internet networks, and more importantly: if those actions take place behind the scene or if some end-user are currently expecting results quickly.

Example, with some behind the scene cron-like tasks, involving third-party services:

async.parallel( [
	retrieveSomeRSS ,
	querySomeThirdPartyAPI ,
	queryMoreThirdPartyAPI
] )
// At most 100 retries, starting with a 100 ms timeout before retrying,
// multiplying timeout by 2 at each new try but capped at 10 minutes timeout
.retry( 100 , 100 , 2 , 60000 )
.exec( function( error , results ) {
	// update your local database or cache
} ) ;

Mixing .timeout() & .retry()

Mixing .timeout() and .retry() can be extremely powerful.

Sometime a task can end up pending a long time, because some bugs occurs, but a retry can eventually succeed immediately: probably we sent a request on some third-party, we get load-balanced to a server that do not respond anymore, but issuing a new request may end up to a server that still works well.

This is exactly what can achieve a mix of .timeout() and .retry(): when the timeout is reached for a job, it triggers its callback with a failed status (new Error( 'Timeout' )), then retry kick in and the job start over, it may hit the time limit again and be restarted again, until it succeeds or the retry countdown abort the whole process.

Also there are IMPORTANT drawback we need to be aware of:

  • when a timeout occurs, the job is *NOT* interupted in any way (see .timeout() for details)
  • so when successive retries kick in, the same job can run multiple times: our job's code should support that without messing our database for example
  • also if a job timeout and is retried, the first try may finally succeed before the second try complete: our job's code should support that case too

As a rule of thumb, if we plan to mix .timeout() and .retry(), we must isolate as much as possible critical code, creating more jobs that perform small task is better.

For example, this is a *VERY* bad practice:

async.do( [
	queryMultipleExternalServicesAndThenUpdateOurLocalDatabaseAccordingly
] )
.timeout( 100 )
.retry( 100 , 100 , 2 , 60000 )
.exec( function( error , results ) {
	console.log( 'Done!' ) ;
} ) ;

We have to consider rewriting it this way:

async.parallel( [
	queryExternalService1 ,
	queryExternalService2 ,
	queryExternalService3
] )
.timeout( 100 )
.retry( 100 , 100 , 2 , 60000 )
.exec( function( error , results ) {
	if ( ! error ) {
		updateOurLocalDatabaseAccordingly( results ) ;
	}
} ) ;

In the last snippet, we have isolated jobs that can timeout due to things that are out of our control. If one query failed, we don't have to restart from scratch, re-doing queries that have already succeeded. Finally, moving updateOurLocalDatabaseAccordingly() into the finallyCallback of .exec() allows us to use the parallel mode, so the whole process perform faster. If we had chosen to put this function into a job, we would have been constrained to use an async.series() factory. More important: we are sure that the code that update our database will run once.

.lastJobOnly( [returnLastJobOnly] )

  • returnLastJobOnly boolean, if omited: true

If set to true, only the last job pass its result to finallyCallback, thenCallback etc...

Without .lastJobOnly() (the default in most factories):

async.series( [
	function( callback ) { callback( undefined , 'my' ) ; } ,
	function( callback ) { callback( undefined , 'wonderful' ) ; } ,
	function( callback ) { callback( undefined , 'result' ) ; }
] )
.exec( function( error , result ) {
	// result equals `[ [ undefined , 'my' ], [ undefined , 'wonderful' ], [ undefined , 'result' ] ]`
} ) ;

With .lastJobOnly() (default in async.waterfall() and async.race() factories):

async.series( [
	function( callback ) { callback( undefined , 'my' ) ; } ,
	function( callback ) { callback( undefined , 'wonderful' ) ; } ,
	function( callback ) { callback( undefined , 'result' ) ; }
] )
.lastJobOnly()
.exec( function( error , result ) {
	// result equals `'result'`
} ) ;

BE CAREFUL: when using .lastJobOnly() in parallel mode, this is the job that finish last which transmits its results. This is *NOT* necessarly the last job in the job's list. Note that .lastJobOnly() is used in async.race() factory, but here the whole process abort when the first job finish without error, so the first job and the last job are the same.

.mapping1to1( [returnMapping1to1] )

  • returnMapping1to1 Boolean, if omited: true

If set to true, the results directly map the jobsList. It is used (and locked) in async.map() factory.

If set to false, the results contains for each entry, the whole argument's list passed by the job's callback.

Without .mapping1to1() (the default in most factories):

async.parallel( [
	function( callback ) { callback( undefined , 'my' ) ; } ,
	function( callback ) { callback( undefined , 'wonderful' ) ; } ,
	function( callback ) { callback( undefined , 'result' ) ; }
] )
.exec( function( error , results ) {
	// results equals `[ [ undefined , 'my' ], [ undefined , 'wonderful' ], [ undefined , 'result' ] ]`
} ) ;

With .mapping1to1() (the default in async.map() factory):

async.parallel( [
	function( callback ) { callback( undefined , 'my' ) ; } ,
	function( callback ) { callback( undefined , 'wonderful' ) ; } ,
	function( callback ) { callback( undefined , 'result' , 'extra argument that will be dropped' ) ; }
] )
.exec( function( error , results ) {
	// results equals `[ 'my' , 'wonderful' , 'result' ]`
} ) ;

Note: when using .mapping1to1(), any extra arguments passed to the job's callback are ignored.

.using( various )

  • various Function, Array or Object

Argument passed to .using() is used in combination with the job's list. Behaviours all depend on the type of the arguments.

In the following .using() variation, async.do() can be replaced by any async.Plan's factory.

async.do( jobsData ).using( workerFunction )

  • jobsData Array (or Object) of Array
  • workerFunction Function

When combining .do() and .using() this way, each job contains an array of arguments to pass to workerFunction.

Example:

async.do( [
	[ 'http://example.com/' , 500 ] ,
	[ 'http://example.com/forum/' , 800 ] ,
	[ 'http://example.com/blog/' , 200 ]
] )
.using( function( url , timeout ) {
	// Async check of url, with some timeout
} )
.exec( function( error , results ) {
	if ( ! error )  { console.log( "Success!" ) ; }
} ) ;

Also, if your workerFunction only accepts one argument, you can avoid Array of Array construct:

async.do( [
	'http://example.com/' ,
	'http://example.com/forum/' ,
	'http://example.com/blog/'
] )
.using( function( url ) {
	// Async check of url
} )
.exec( function( error , results ) {
	if ( ! error )  { console.log( "Success!" ) ; }
} ) ;

async.do( jobsList ).using( args )

  • jobsList Array (or Object) of Function
  • args Array

This is the opposite. Here we have a list of different function, but they take the same arguments.

Example:

async.do( [
	dnsResolve ,
	ping ,
	httpGet
] )
.using( 'http://example.com/' )
.exec( function( error , results ) {
	if ( ! error )  { console.log( "Success!" ) ; }
} ) ;

In the previous snippet, .using() provide the data, and .do() provide the actions, where dnsResolve, ping and httpGet are three functions that take an URL as their first arguments. The dnsResolve function will convert the URL into an IP addresse, then ping will er... ping this IP, and finally httpGet will forge an HTTP request and get the page content.

.iterator( iteratorFunction )

  • iteratorFunction Function( element , [key] , [container] , callback ) where:
    • element mixed the current array element or object's property value
    • key Number or String the current key (index for array, property name for object)
    • container Array or Object, this is the original container
    • callback Function( error , [arg1] , [arg2] , ... ) a node-style callback to trigger on completion

With .iterator( iteratorFunction ) our jobs become data for iteratorFunction. This is close to the behaviour of .using( workerFunction ), except that an iterator function is not called the same way.

Rather than processing each element of the Array as an array of arguments, here the whole element is passed as the first argument of the iterator.

In fact, async.do( container ).iterator( iteratorFunction ) is equal to async.foreach( container , iteratorFunction ).

See async.foreach() for details.

.aggregator( transmitAggregate , returnAggregate , defaultAggregate )

  • transmitAggregate Boolean, if omited: true
  • returnAggregate Boolean, if omited: true
  • defaultAggregate mixed, this is the default value

This set or unset the current async.Plan as an aggregator.

Note that async.do( container ).iterator( iterator ).aggregator( true , true , initialAggregatedValue ) is equal to async.reduce( initialAggregatedValue , container , iterator ). For more details, see async.reduce().

If transmitAggregate is set, then the iterator (or job's function) receive the current aggregatedValue as its first argument, all other arguments being shifted to the right.

If returnAggregate is set, then the results passed to callback (then, catch and finally callback) only contains the aggregatedValue.

If defaultAggregate is set, this is what will be used as the starting value for aggregatedValue.

.nice( niceness )

  • niceness Number between -3 and Infinity

This try to mimic the unix command nice and renice. This set up how the job's scheduler behaves.

It depends on the niceness value:

  • -3 is for synchronous scheduling: the scheduler process as fast as possible, if jobs provided by user are synchronous, everything will be synchronous and will be executed in one code flow, in that particular case, there will be no difference between async.series() or async.parallel().
  • -2 is for asynchronous scheduling, it uses process.nextTick() internally. Basicly, it will run almost as fast as synchronous mode, but each time the scheduler kick in, it will run new jobs in another code execution flow. This still let us time to define things after .exec() that will be run before any synchronous or asynchronous jobs. Also it will schedule before I/O most of times (see process.nextTick() for details).
  • -1 is for asynchronous scheduling, it uses setImmediate() internally. This scheduling allows I/O to be performed (see setImmediate() for details).
  • >=0 is for asynchronous scheduling, it uses setTimeout() internally. This scheduling allows I/O to be performed and much more. The niceness value multiplied by 10 is used as the delay for setTimeout(), so using .nice(10) means that the scheduler will delay further action for 100ms (see setTimeout() for details).

By default, if .nice() is not called, the scheduler is synchronous.

Synchronous scheduling is just fine in usual case. However, we may have stack overflow issues if loop, .retry() or just an huge job's list is involved, because everything use nested callback the way we would have done it, those nested callback are just abstracted away by the lib, but still remains behind the scene.

Asynchronous scheduling uses the javascript's event loop, so there is no more infinite nested callback possible. It can scale better for big job's list, loop and .retry()...

If we have a big synchronous task to do, we can divide it into many jobs, then use for example:

async.series( jobsList ).nice( 0 ).exec() ;

... to asyncify it a bit. This can be very important for services: our application must keep accepting new request during the big task processing. Also if the task is really that big, it is usually a good practice to spawn a process or create a new specific service for this particular task anyway.

.then( thenCallback )

  • thenCallback Function( results )
    • results mixed, depends on options

This set up a then callback part of the async.Plan itself. See thenCallback for details.

.else( elseCallback )

  • elseCallback Function( results )
    • results mixed, depends on options

This set up an else callback part of the async.Plan itself. See elseCallback for details.

This has no effect for Do family async.Plan.

.catch( catchCallback )

  • catchCallback Function( error , results )
    • error mixed, depends on jobs' code
    • results mixed, depends on options

This set up a catch callback part of the async.Plan itself. See catchCallback for details.

.finally( finallyCallback )

  • finallyCallback Function( error , results )
    • error mixed, depends on jobs' code
    • results mixed, depends on options

This set up a finally callback part of the async.Plan itself. See finallyCallback for details.

.clone()

This method is used to clone an async.Plan and return it.

The cloned async.Plan is unlocked: we can use its modifier methods even if the original async.Plan is locked or is currently under execution.

.export( [execMethod] )

  • execMethod String, one of 'exec', 'execKV', 'execFinally', 'execThenCatch', 'execThenElse', 'execThenElseCatch' and 'execArgs'... if omited: 'exec'

This export and return an async.Plan as a function.

By default, the exported function behaves exactly like the .exec() method of the async.Plan. If we want to export a different .exec()-like method, we can provide the method's name as the argument of .export().

Since the async.Plan is internally cloned, changes made on the original async.Plan do not change how the exported function behaves.

.exec( ... )

This method execute the async.Plan.

Until an exec-like method is called, nothing happens at all, previous methods mostly configure the async.Plan.

Arguments passed to .exec() depend on factories by default, and can be modified by .execMapping().

However, most factories use this scheme:

.exec( [arg1] , [arg2] , ... , [finallyCallback](#ref.callback.finallyCallback) ).

  • arg1, arg2, ... mixed : arguments to pass to all the jobs (or to the first job only in waterfall mode)
  • finallyCallback Function( error , results )
    • error mixed, depends on jobs' code
    • results mixed, depends on options

Following .exec()-like methods have a static scheme, and are not modified by .execMapping().

.execFinally( finallyCallback )

  • finallyCallback Function( error , results )
    • error mixed, depends on jobs' code
    • results mixed, depends on options

This method execute the async.Plan, just like .exec(). It only accepts one argument: the finallyCallback.

.execThenCatch( thenCallback , catchCallback , [finallyCallback] )

  • thenCallback Function( results )
    • results mixed, depends on options
  • catchCallback Function( error , results )
    • error mixed, depends on jobs' code
    • results mixed, depends on options
  • finallyCallback Function( error , results )
    • error mixed, depends on jobs' code
    • results mixed, depends on options

This method execute the async.Plan, just like .exec(). Like the name suggests, the first argument should be the thenCallback, and catchCallback as the second.

However, the finallyCallback can still be passed as the third argument.

.execThenElse( thenCallback , elseCallback , [finallyCallback] )

  • thenCallback Function( results )
    • results mixed, depends on options
  • elseCallback Function( results )
    • results mixed, depends on options
  • finallyCallback Function( error , results )
    • error mixed, depends on jobs' code
    • results mixed, depends on options

This method execute the async.Plan, just like .exec(). Like the name suggests, the first argument should be the thenCallback, and elseCallback as the second.

However, the finallyCallback can still be passed as the third argument.

.execThenCatch( thenCallback , elseCallback , catchCallback , [finallyCallback] )

  • thenCallback Function( results )
    • results mixed, depends on options
  • elseCallback Function( results )
    • results mixed, depends on options
  • catchCallback Function( error , results )
    • error mixed, depends on jobs' code
    • results mixed, depends on options
  • finallyCallback Function( error , results )
    • error mixed, depends on jobs' code
    • results mixed, depends on options

This method execute the async.Plan, just like .exec(). Like the name suggests, the first argument should be the thenCallback, elseCallback as the second, and catchCallback as the third.

However, the finallyCallback can still be passed as the fourth argument.

.execArgs( [arg1] , [arg2] , ... )

  • arg1, arg2, ... mixed

This method execute the async.Plan, just like .exec(). All arguments passed to this method are passed to all the jobs (except in waterfall mode, where they are passed only to the first job).

.execMapping( config )

  • config Object
    • .aggregateArg Boolean, if omited: false
    • .minInputs Number (integer), if omited: 0
    • .maxInputs Number (integer), if omited: 0
    • .inputsName Array of String describing each input (only used for function signature), if omited: []
    • .callbacks Array of String (can only be: 'then', 'else', 'catch' and 'finally'), if omited: []

This method is used to configure .exec()'s behaviour.

If config.aggregateArg is true, the first argument of .exec() is the aggregate's value.

If config.maxInputs is greater than 0, the next arguments of .exec() *MAY* be inputs for jobs (arguments passed to them). If config.minInputs is greater than 0, the next arguments of .exec() *MUST* be inputs for jobs. In fact, .exec() supports variable number of arguments.

Note that in waterfall mode, inputs arguments are only passed to the first job.

Finally, if config.callbacks is not an empty array, the last arguments are callback, strictly in the order defined.

.exec() supports variable number of arguments:

  • if config.minInputs and config.maxInputs are equals, the number of inputs arguments are fixed, so the number of callback is variable: some callback could be omited

  • if config.minInputs and config.maxInputs are *NOT* equals, the number of inputs arguments are variable, so the number of callback is fixed (if it wasn't, we couldn't have a clue weither an argument is an input or a callback)

Example using the async.Plan property .execMappingSignature to get the signature of .exec(), here with variable number of inputs:

var plan = async.do( [
	// Some jobs
] )
.execMapping( {
	callbacks: [ 'then' , 'catch' ] ,
	minInputs: 0 ,
	maxInputs: 2 ,
	inputsName: [ 'firstArg' , 'secondArg' ]
} ) ;

console.log( plan.execMappingSignature ) ;
// produce: ( [firstArg], [secondArg], thenCallback, catchCallback )

Example with fixed number of inputs:

var plan = async.do( [
	// Some jobs
] )
.execMapping( {
	callbacks: [ 'then' , 'catch' ] ,
	minInputs: 2 ,
	maxInputs: 2 ,
	inputsName: [ 'firstArg' , 'secondArg' ]
} ) ;

console.log( plan.execMappingSignature ) ;
// produce: ( firstArg, secondArg, [thenCallback], [catchCallback] )

Example with config.aggregateArg set to true:

var plan = async.do( [
	// Some jobs
] )
.execMapping( {
	aggregateArg: true ,
	callbacks: [ 'then' , 'catch' ] ,
	minInputs: 2 ,
	maxInputs: 2 ,
	inputsName: [ 'firstArg' , 'secondArg' ]
} ) ;

console.log( plan.execMappingSignature ) ;
// produce: ( aggregateValue, firstArg, secondArg, [thenCallback], [catchCallback] )

.execKV( KeyValuePairs )

  • KeyValuePairs Object

This method execute the async.Plan, just like .exec(). Rather than passing arguments in a predefined order, .execKV() accepts an object of key-value pairs. This is an alternative to .execMapping() & .exec().

Pro:

  • it improves greatly the readability
  • more straightforward, no need to remember the signature of .exec()

Cons:

  • With .execMapping(), .exec() can raise error if misused, for example it constraints a number of input's arguments

Callbacks

Those callbacks are triggered (if conditions are met) when the async.Plan is resolved. Note that if we don't use .timeout() and a job is pending forever, the async.Plan will never being resolved, thus no callback will be ever triggered.

There are two stages of callback.

  • The first stage are callbacks defined in the async.Plan itself. Those callback are *ALWAYS* triggered before the second stage.

  • The second stage are callbacks of the .exec()-like methods.

thenCallback

  • thenCallback Function( results )
    • results mixed, depends on options

For Do family, this callback is triggered if the async.Plan's execution succeed. The success depends on factory and options used. Usually, an async.Plan succeed if no error happened. But jobs on error can be retried if .retry() is used, and finally succeed, async.race succeed as long as one job succeed, and so on.

Furthermore, for Conditional family, the final result should be true or truthy for this callback to be triggered.

The results argument's format passed to this callback depends on many factor. See related factories and modifier.

elseCallback

  • elseCallback Function( results )
    • results mixed, depends on options

It never triggers for Do family async.Plan.

For Conditional family, it will trigger if the final result is false or falsy. However, if no catchCallback exists for this stage (see callbacks introduction for what a callback stage is), it will trigger if the final outcome is an error too.

catchCallback

  • catchCallback Function( error , results )
    • error mixed, depends on jobs' code
    • results mixed, depends on options

This callback is triggered when the final outcome is an error.

finallyCallback

  • finallyCallback Function( error , results )
    • error mixed, depends on jobs' code
    • results mixed, depends on options

This callback is *ALWAYS* triggered. This is the last callback of a stage to be triggered.

whileCallback

  • whileCallback Function( error , results , logicCallback ), where:
    • error mixed any truthy means error
    • results Array or Object that maps the jobsList
    • logicCallback Function( [error] , loopAgain ) where:
      • error mixed any truthy means error
      • loopAgain Boolean anything else is considered either truthy or falsy

This callback is used for while loop.

The last iteration's error and results are passed to this function.

Then the internal logicCallback function can be triggered, if a truthy value is passed as the loopAgain argument, a new loop iteration will be performed, if a falsy value is passed, no new loop iteration will take place: completion callback (thenCallback, elseCallback, catchCallback, finallyCallback) will be triggered depending on the current (last) iteration's outcome.

Class async.ExecContext

An instance of async.ExecContext is returned by each exec()