cppc
v1.0.0
Published
:..: (colon period period colon) esoteric programming language
Downloads
12
Readme
:..:
:..: (colon period period colon) is an esoteric programming language based on the manipulation of four unbounded integer registers.
Language
Syntax
A program in :..:
- Consists only of the symbols
:
(colon) and.
(period); all other symbols are ignored. - Is a sequence of 4-tuples that form program instructions (the program length % 4 == 0).
- Has a length greater than zero (at least one 4-tuple).
Semantics
Registers
Each 4-tuple reads or manipulates one of the four registers A, B, C, D.
The current register is determined by the index of the instruction in the program code. For instance, the first instruction works with A, fourth with D, fifth with A, and so on.
Instructions
Four possible instructions can be formed based on the position of the colon in a 4-tuple:
| Instruction | Name | Meaning | Code |
| :---------: | ---- | ------- | ---- |
| | Noop | Do nothing | ....
|
| + | Increment | Increments the current register value | .:..
|
| - | Decrement | Decrements the current register value | ..:.
|
| [ | Loop begin | Jumps to the loop end if the current register value is not zero | :...
|
| ] | Loop end | Jumps to the paring [ | ...:
|
Instructions [ and ] are paired, meaning each [ must have a following ] and vice versa.
Instructions can be combined into compact ones. For instance, the 4-tuple
::..
contains both instructions [ (loop begin) and + (increment).
Compact instructions are executed in the order they appear in the 4-tuple.
Examples
No-op program
Does nothing:
....
Infinite loop
Loops forever:
:..:
Alternativelly:
::::
Clear
Sets register A to zero:
.... .... :... ....
:... .... .:.. ....
.:.: .... .... ....
..:: .... ..:. ....
The program reads as follows:
C[ A[ C+ A+] A-] C-
Move
Moves register B to register A:
.... .... :... ....
.... :... .:.. ....
.... .:.: .... ....
.:.. ..:. ...: ....
..:. ..:. ..:. ....
The program reads as follows:
C[ B[ C+ B+] A+ B- C] A- B- C-
Copy
Copies register A to register B:
.... .... :... ....
:... .... .:.. ....
.:.: .... .... ....
..:. .:.. .... .:.:
.... ..:. ..:. ..:.
.... .... :... :...
.... .... .:.. .:.:
.... .... .... ..:.
.:.: .... .... ....
..:. .... ..:. ....
The program reads as follows:
C[ A[ C+ A+] A- B+ D+] B- C- D-
C[ D[ C+ D+] D- A+] A- C-
Switch
Switches register A with register B:
.... .... :... ....
::.. .... .:.: .:..
..:: .... ..:. ..:.
.... .... :... ....
.... ::.. .:.: ....
.:.. ..:: ..:. ....
..:. .... :... ::..
.... .... .:.: ..:.
.... .:.: ..:. ....
.... ..:. .... ....
The program reads as follows:
C[ A[ A+ C+] D+ A-] C- D- move A to D
C[ B[ B+ C+] A+ B-] C- A- move B to A
C[ D[ D+ C+] D- B+] C- B- move D to B
Fibonacci sequence
Computes the sequence in register A:
.... .:.. :... ....
.... .... :... ....
::.. .... .:.: .:..
..:: .... ..:. ..:.
.... .... :... ....
.... ::.. .:.: ....
.:.. ..:: ..:. ....
..:. .... :... ::..
.... .... .:.: ..:.
.... .:.: ..:. ....
.... ..:. :... ....
::.. .... .:.: .:..
..:. .:.: ..:. ..:.
.... ..:. :... ::..
.... .... .:.: ..:.
.:.: .... ..:. ....
..:: .... .... ....
The program reads as follows:
B+ init 0 1 0 0
C[ loop forever
C[ A[ A+ C+] D+ A-] C- D- move A to D
C[ B[ B+ C+] A+ B-] C- A- move B to A
C[ D[ D+ C+] D- B+] C- B- move D to B
C[ A[ A+ C+] D+ A- B+] C- D- B-
C[ D[ D+ C+] D- A+] C- A- copy A to B
]
Hello World
For computing "Hello World," we need to interpret integers in registers as a string. We can achieve this by defining an alphabet and concatenating register values.
| Symbol | Binary |
| ------ | ------ |
|
| 000 |
| d
| 001 |
| e
| 010 |
| H
| 011 |
| l
| 100 |
| o
| 101 |
| r
| 110 |
| W
| 111 |
Registers must contain the following values:
| Register | Binary | Decimal | Interpreted | | -------- | --------- | ------- | ----------- | | A | 011010100 | 212 | Hel | | B | 100101000 | 296 | lo | | C | 111101110 | 494 | Wor | | D | 100001 | 33 | ld |
Shortened code:
.:.. .:.. .:.. .:.. 33 times
.:.. .:.. .:.. .... 179 times
.... .:.. .:.. .... 84 times
.... .... .:.. .... 198 times
Turing completeness
:..: is intuitively Turing-complete as it provides four unbounded registers (two have been proven to be sufficient), elementary arithmetics, and while loops.
A concrete proof is still to be done.
JavaScript interpreter
npm i cppc
const cppc = require('cppc')
// [2, 0, 1, 1]
cppc(`.:...:...:...:...:....:.`)