npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

conjugate-gradient

v0.0.2

Published

Conjugate gradient solver

Downloads

18

Readme

conjugate-gradient

Solves sparse symmetric positive definite linear systems. These problems arise in many physical applications, like linear elasticity, heat transfer and other diffusion based transport phenomena.

This code implements the conjugate gradient method using a Jacobi preconditioner.

Install

npm install conjugate-gradient

Example

var pcg = require("conjugate-gradient")
  , CSRMatrix = require("csr-matrix")

//Create a matrix
var A = CSRMatrix.fromDense([[-2, 1, 0],
                             [ 1,-2, 1],
                             [ 0, 1,-2]])

//Create input vector
var B = new Float64Array([1, 0, 0])

//Solve equation:
//
//  A x = B
//
console.log(pcg(A, b))

require("conjugate-gradient")(A, b[, x0, tolerance, max_iter])

Solves the equation Ax = b by conjugate gradient

  • A is a symmetric positive definite matrix represented as a CSRMatrix
  • b is an array of length n
  • x0 is an optional initial guess for the solution to the equation. If specified, the result of the solution will also get stored in this array
  • tolerance is a cutoff tolerance for the solution. (Default is 1e-5)
  • max_iter is the maximum number of iterations to run the solver. (Default is min(n, 20))

Returns An array encoding the solution to the equation Ax = b

Credits

(c) 2013 Mikola Lysenko. MIT License