conditional-love
v2.1.0
Published
Programmatically construct conditional expressions
Downloads
1
Readme
conditional-love
Programmatically construct conditional expressions
Installation
npm install conditional-love
Usage
Basic Dispatcher Stuffs
Here's an example of a programmatically constructed if... else if... else
statement:
import {
Dispatcher,
IF, RETURN,
} from 'conditional-love';
// This Dispatcher accepts 2 numbers as inputs and
// returns a number as an output.
const d = Dispatcher<[number, number], number>();
// Setup our Dispatcher rules:
d.use(IF((x, y)=> x < y, (x, y)=> x + y));
d.use(IF((x, y)=> x > y, (x, y)=> x * y));
// Alright, let's put it to the test:
console.log(d(3, 4)); // Output: 7
console.log(d(4, 3)); // Output: 12
console.log(d(3, 3)); // Throws UnhandledArgumentsError
Notice that there are no rules in place to handle the d(3, 3)
case. By default, this will cause the Dispatcher
to throw an UnhandledArgumentsError
. You can override this behavior via the Dispatcher#otherwise(...)
method:
d.otherwise((x, y)=> 0);
Returning a default value is a very common pattern. Therefore, you can also specify this same behavior as:
d.otherwise(RETURN(0));
Advanced Dispatcher Stuffs
The IF(condition, handler)
function is just a factory for producing a very common type of RULE_FUNCTION
. Specifically, the RULE_FUNCTION
has the form:
function _if(...args) {
if(condition(...args)) {
return handler;
}
}
As you can see, it evaluates the condition(..)
. If this condition returns something truthy, then it returns the associated handler(..)
function. Otherwise, it returns undefined
. This protocol informs the Dispatcher
about whether or not the RULE_FUNCTION
is able to handle the input.
Most of the time, you don't need to worry about this level of detail, and you can just rely upon the IF(..)
factory. But, on rare occassions, both the RULE_FUNCTION
and the handler(..)
function rely upon the same computationally-expensive operation. In these cases, you can write your own RULE_FUNCTION
by hand to minimize computational costs. For example:
function customRule(...args) {
const expensive = someExpensiveCalculation(...args);
if(someCondition(expensive)) {
function handler() {
return doSomethingWith(expensive);
}
return handler;
}
}
d.use(customRule);
Predicate Function Stuffs
It's pretty common to find ourselves writing code such as the following:
function hasLatitude(x) {
return typeof(x.latitude) === 'number';
}
function hasLongitude(x) {
return typeof(x.longitude) === 'number';
}
function isGeo(x) {
return hasLatitude(x) && hasLongitude(x);
}
This is fine, but the definition of the isGeo(..)
function is somewhat imperative. We can express it in a more declarative fashion as follows:
import {AND} from 'conditional-love';
function hasLatitude(x) {
return typeof(x.latitude) === 'number';
}
function hasLongitude(x) {
return typeof(x.longitude) === 'number';
}
const isGeo = AND([
hasLatitude,
hasLongitude,
]);
Likewise, conditional-love
also provides OR(..)
and NOT(..)
functions as well. So, this allows you to construct expressions such as:
import {
AND, OR, NOT,
} from 'conditional-love';
// A Location can be either a Geo or a non-empty String
const isLocation = OR([
isGeo,
AND([
isString,
NOT(isEmpty),
])
]);
These functions are useful when you are trying to build your own domain-specific language. For instance, let's say we want to implement a pattern matcher for domain names. You could then do something like this:
// Hard-coded example. In practice, you would actually use this
// DSL to construct domain pattern matchers programmatically.
const isAcceptableDomain = OR([
Exactly("foo.com"),
AND([
SubdomainOf("foo.com"),
NOT(
Exactly("invalid.foo.com")
),
])
]);
// Test the function we produced via our domain-specific language
isAcceptableDomain("foo.com"); // true
isAcceptableDomain("bar.foo.com"); // true
isAcceptableDomain("invalid.foo.com"); // false
isAcceptableDomain("not.invalid.foo.com"); // true