compute-variance
v3.0.0
Published
Computes the variance.
Downloads
1,101
Readme
Variance
Computes the variance.
The population variance (biased sample variance) is defined as
and the unbiased sample variance is defined as
where x_0, x_1,...,x_{N-1}
are individual data values and N
is the total number of values in the data set.
Installation
$ npm install compute-variance
For use in the browser, use browserify.
Usage
var variance = require( 'compute-variance' );
variance( x[, opts] )
Computes the variance. x
may be either an array
, typed array
, or matrix
.
var data, s2;
data = [ 2, 4, 5, 3, 4, 3, 1, 5, 6, 9 ];
s2 = variance( data );
// returns 5.067
data = new Int8Array( data );
s2 = variance( data );
// returns 5.067
For non-numeric arrays
, provide an accessor function
for accessing numeric array
values.
var data = [
{'x':2},
{'x':4},
{'x':5},
{'x':3},
{'x':4},
{'x':3},
{'x':1},
{'x':5},
{'x':6},
{'x':9}
];
function getValue( d ) {
return d.x;
}
var s2 = variance( data, {
'accessor': getValue
});
// returns 5.067
By default, the function calculates the unbiased sample variance. To calculate the population variance (or a biased sample variance), set the bias
option to true
.
var data = [ 2, 4, 5, 3, 4, 3, 1, 5, 6, 9 ];
var sigma2 = variance( data, {
'bias': true
});
// returns 4.56
If provided a matrix
, the function accepts the following additional options
:
- dim: dimension along which to compute the variance. Default:
2
(along the columns). - dtype: output
matrix
data type. Default:float64
.
By default, the function computes the variance along the columns (dim=2
).
var matrix = require( 'dstructs-matrix' ),
data,
mat,
s2,
i;
data = new Int8Array( 25 );
for ( i = 0; i < data.length; i++ ) {
data[ i ] = i;
}
mat = matrix( data, [5,5], 'int8' );
/*
[ 0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19
20 21 22 23 24 ]
*/
s2 = variance( mat );
/*
[ 2.5
2.5
2.5
2.5
2.5 ]
*/
To compute the variance along the rows, set the dim
option to 1
.
s2 = variance( mat, {
'dim': 1
});
/*
[ 62.5, 62.5, 62.5, 62.5, 62.5 ]
*/
By default, the output matrix
data type is float64
. To specify a different output data type, set the dtype
option.
s2 = variance( mat, {
'dim': 1,
'dtype': 'uint8'
});
/*
[ 62.5, 62.5, 62.5, 62.5, 62.5 ]
*/
var dtype = s2.dtype;
// returns 'uint8'
If provided a matrix
having either dimension equal to 1
, the function treats the matrix
as a typed array
and returns a numeric
value.
data = [ 2, 4, 5, 3, 4, 3, 1, 5, 6, 9 ];
// Row vector:
mat = matrix( new Int8Array( data ), [1,10], 'int8' );
s2 = variance( mat );
// returns 5.067
// Column vector:
mat = matrix( new Int8Array( data ), [10,1], 'int8' );
s2 = variance( mat );
// returns 5.067
If provided an empty array
, typed array
, or matrix
, the function returns null
.
s2 = variance( [] );
// returns null
s2 = variance( new Int8Array( [] ) );
// returns null
s2 = variance( matrix( [0,0] ) );
// returns null
s2 = variance( matrix( [0,10] ) );
// returns null
s2 = variance( matrix( [10,0] ) );
// returns null
Examples
var matrix = require( 'dstructs-matrix' ),
variance = require( 'compute-variance' );
var data,
mat,
s2,
i;
// Plain arrays...
var data = new Array( 100 );
for ( var i = 0; i < data.length; i++ ) {
data[ i ] = Math.round( Math.random() * 10 + 1 );
}
s2 = variance( data );
// Object arrays (accessors)...
function getValue( d ) {
return d.x;
}
for ( i = 0; i < data.length; i++ ) {
data[ i ] = {
'x': data[ i ]
};
}
s2 = variance( data, {
'accessor': getValue
});
// Typed arrays...
data = new Int32Array( 100 );
for ( i = 0; i < data.length; i++ ) {
data[ i ] = Math.round( Math.random() * 10 + 1 );
}
s2 = variance( data );
// Matrices (along rows)...
mat = matrix( data, [10,10], 'int32' );
s2 = variance( mat, {
'dim': 1
});
// Matrices (along columns)...
s2 = variance( mat, {
'dim': 2
});
// Matrices (custom output data type)...
s2 = variance( mat, {
'dtype': 'uint8'
});
To run the example code from the top-level application directory,
$ node ./examples/index.js
Tests
Unit
Unit tests use the Mocha test framework with Chai assertions. To run the tests, execute the following command in the top-level application directory:
$ make test
All new feature development should have corresponding unit tests to validate correct functionality.
Test Coverage
This repository uses Istanbul as its code coverage tool. To generate a test coverage report, execute the following command in the top-level application directory:
$ make test-cov
Istanbul creates a ./reports/coverage
directory. To access an HTML version of the report,
$ make view-cov
License
Copyright
Copyright © 2014-2015. The Compute.io Authors.