compute-qmean
v2.0.0
Published
Computes the quadratic mean (root mean square).
Downloads
6,816
Maintainers
Readme
Quadratic Mean
Computes the quadratic mean (root mean square; rms).
The quadratic mean is defined as
where x_0, x_1,...,x_{N-1}
are individual data values and N
is the total number of values in the data set.
Installation
$ npm install compute-qmean
For use in the browser, use browserify.
Usage
var qmean = require( 'compute-qmean' );
qmean( x[, opts] )
Computes the quadratic mean (root mean square). x
may be either an array
, typed array
, or matrix
.
var data, mu;
data = [ 2, 7, 3, -3, 9 ];
mu = qmean( data );
// returns ~5.5136
data = new Int8Array( data );
mu = qmean( data );
// returns ~5.5136
For non-numeric arrays
, provide an accessor function
for accessing array
values.
var data = [
{'x':2},
{'x':7},
{'x':3},
{'x':-3},
{'x':9}
];
function getValue( d, i ) {
return d.x;
}
var mu = qmean( data, {
'accessor': getValue
});
// returns ~5.5136
If provided a matrix
, the function accepts the following options
:
- dim: dimension along which to compute the quadratic mean. Default:
2
(along the columns). - dtype: output
matrix
data type. Default:float64
.
By default, the function computes the quadratic mean along the columns (dim=2
).
var matrix = require( 'dstructs-matrix' ),
data,
mat,
mu,
i;
data = new Int8Array( 25 );
for ( i = 0; i < data.length; i++ ) {
data[ i ] = i;
}
mat = matrix( data, [5,5], 'int8' );
/*
[ 0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19
20 21 22 23 24 ]
*/
mu = qmean( mat );
/*
[ 2.449
7.141
12.083
17.059
22.045 ]
*/
To compute the quadratic mean along the rows, set the dim
option to 1
.
mu = qmean( mat, {
'dim': 1
});
/*
[ 12.247, 13.077, 13.928, 14.799, 15.684 ]
*/
By default, the output matrix
data type is float64
. To specify a different output data type, set the dtype
option.
mu = qmean( mat, {
'dim': 1,
'dtype': 'uint8'
});
/*
[ 12, 13, 13, 14, 15 ]
*/
var dtype = mu.dtype;
// returns 'uint8'
If provided a matrix
having either dimension equal to 1
, the function treats the matrix
as a typed array
and returns a numeric
value.
data = [ 2, 4, 5, 3, 8, 2 ];
// Row vector:
mat = matrix( new Int8Array( data ), [1,6], 'int8' );
mu = qmean( mat );
// returns ~4.509
// Column vector:
mat = matrix( new Int8Array( data ), [6,1], 'int8' );
mu = qmean( mat );
// returns ~4.509
If provided an empty array
, typed array
, or matrix
, the function returns null
.
mu = qmean( [] );
// returns null
mu = qmean( new Int8Array( [] ) );
// returns null
mu = qmean( matrix( [0,0] ) );
// returns null
mu = qmean( matrix( [0,10] ) );
// returns null
mu = qmean( matrix( [10,0] ) );
// returns null
Examples
var matrix = require( 'dstructs-matrix' ),
qmean = require( 'compute-qmean' );
var data,
mat,
mu,
i;
// ----
// Plain arrays...
data = new Array( 1000 );
for ( i = 0; i < data.length; i++ ) {
data[ i ] = Math.random() * 100;
}
mu = qmean( data );
console.log( 'Arrays: %d\n', mu );
// ----
// Object arrays (accessors)...
function getValue( d ) {
return d.x;
}
for ( i = 0; i < data.length; i++ ) {
data[ i ] = {
'x': data[ i ]
};
}
mu = qmean( data, {
'accessor': getValue
});
console.log( 'Accessors: %d\n', mu );
// ----
// Typed arrays...
data = new Int32Array( 1000 );
for ( i = 0; i < data.length; i++ ) {
data[ i ] = Math.random() * 100;
}
mu = qmean( data );
console.log( 'Typed arrays: %d\n', mu );
// ----
// Matrices (along rows)...
mat = matrix( data, [100,10], 'int32' );
mu = qmean( mat, {
'dim': 1
});
console.log( 'Matrix (rows): %s\n', mu.toString() );
// ----
// Matrices (along columns)...
mu = qmean( mat, {
'dim': 2
});
console.log( 'Matrix (columns): %s\n', mu.toString() );
// ----
// Matrices (custom output data type)...
mu = qmean( mat, {
'dtype': 'uint8'
});
console.log( 'Matrix (%s): %s\n', mu.dtype, mu.toString() );
To run the example code from the top-level application directory,
$ node ./examples/index.js
Notes
The algorithm to compute the quadratic mean first calculates the L2 norm before dividing by the square root of the number of elements. This particular implementation attempts to avoid overflow and underflow and is accurate to <1e-13
compared to the canonical formula for calculating the root mean square.
References
- Dahlquist, Germund and Bjorck, Ake. Numerical Methods in Scientific Computing.
- Blue, James (1978) "A Portable Fortran Program To Find the Euclidean Norm of a Vector". ACM Transactions on Mathematical Software.
- Higham, Nicholas J. Accuracy and Stability of Numerical Algorithms, Second Edition.
This module implements a one-pass algorithm proposed by S.J. Hammarling.
Tests
Unit
Unit tests use the Mocha test framework with Chai assertions. To run the tests, execute the following command in the top-level application directory:
$ make test
All new feature development should have corresponding unit tests to validate correct functionality.
Test Coverage
This repository uses Istanbul as its code coverage tool. To generate a test coverage report, execute the following command in the top-level application directory:
$ make test-cov
Istanbul creates a ./reports/coverage
directory. To access an HTML version of the report,
$ make view-cov
License
Copyright
Copyright © 2014-2015. The Compute.io Authors.