npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

complexity-report

v2.0.0-alpha

Published

Software complexity analysis for JavaScript projects

Downloads

18,871

Readme

complexity-report

Dependency Status devDependency Status

Software complexity analysis for JavaScript projects. Command-line front-end for escomplex. Less attractive elder brother of JSComplexity.org.

Software complexity analysis

Complexity is the quality of consisting of many interrelated parts. When software consists of many interrelated parts, it becomes more difficult to reason about. Software that is difficult to reason about is a more fertile breeding ground for bugs than software that is simple.

Every problem space contains some level of inherent complexity, which is shared by all possible solutions. However, as programmers, we can reduce the complexity of our chosen solutions by limiting the interrelatedness of their constituent components. This is commonly referred to as favouring cohesion over coupling, and forms the bedrock on which axioms such as the single responsibility principle are built.

In codebases that are large and/or unfamiliar, it can be difficult to know whether regions of complexity exist and where they might be. By defining metrics of complexity, the search for offending components can be automated and brought into the existing build process alongside other forms of static analysis and unit tests.

How it works

complexity-report is just a node.js-based command-line wrapper around escomplex, which is the library that performs the actual analysis work. Code is passed to escomplex in the form of syntax trees that have been generated with esprima, the popular JavaScript parser.

Here is an example report.

Complexity metrics

The readme for escomplex contains a brief overview of the metrics it produces.

What not to do with the results

The numbers returned by this tool should not be interpreted as definitive indicators of whether a piece of software is "too complex", whatever that might mean.

Software development is a varied field and every project is subject to a unique set of environmental factors. Attempts to set generic hard limits for these complexity metrics must essentially be arbitrary and fail to consider the specific requirements of a given project. Further, complexity itself is such an amorphous, multi-dimensional continuum, that attempting to pigeon-hole chunks of code at discrete points along a single axis is an intrinsically crude approach.

What to do with the results

It is better to use this tool as a fuzzy, high-level mechanism, which can identify regions of interest or concern and from which your own programming- and domain-expertise can take over for a more comprehensive analysis.

Although the metrics themselves are not perfect, they can help to identify areas of code that warrant closer inspection. They can also be tracked over time, as an indicator of the direction that overall code quality may be moving in.

The tool can be configured to fail when complexity metrics pass a specified threshold, to aid its usefulness in automated environments / CI. There are also options for controlling how metrics are calculated and the format of the report output.

Installation

You must have node.js installed.

Then, for a project-based install:

npm install complexity-report

Or globally for all projects:

sudo npm install -g complexity-report

Usage

cr [options] <path>

The tool will recursively read files from any directories that it encounters automatically.

Command-line options

-h, --help                            output usage information
-c, --config <path>                   specify a configuration JSON file
-o, --output <path>                   specify an output file for the report
-f, --format <format>                 specify the output format of the report
-e, --ignoreerrors                    ignore parser errors
-a, --allfiles                        include hidden files in the report
-p, --filepattern <pattern>           specify the files to process using a regular expression to match against file names
-P, --dirpattern <pattern>            specify the directories to process using a regular expression to match against directory names
-x, --excludepattern <pattern>        specify the the directories to exclude using a regular expression to match against directory names
-m, --maxfiles <number>               specify the maximum number of files to have open at any point
-F, --maxfod <first-order density>    specify the per-project first-order density threshold
-O, --maxcost <change cost>           specify the per-project change cost threshold
-S, --maxsize <core size>             specify the per-project core size threshold
-M, --minmi <maintainability index>   specify the per-module maintainability index threshold
-C, --maxcyc <cyclomatic complexity>  specify the per-function cyclomatic complexity threshold
-Y, --maxcycden <cyclomatic density>  specify the per-function cyclomatic complexity density threshold
-D, --maxhd <halstead difficulty>     specify the per-function Halstead difficulty threshold
-V, --maxhv <halstead volume>         specify the per-function Halstead volume threshold
-E, --maxhe <halstead effort>         specify the per-function Halstead effort threshold
-s, --silent                          don't write any output to the console
-l, --logicalor                       disregard operator || as source of cyclomatic complexity
-w, --switchcase                      disregard switch statements as source of cyclomatic complexity
-i, --forin                           treat for...in statements as source of cyclomatic complexity
-t, --trycatch                        treat catch clauses as source of cyclomatic complexity
-n, --newmi                           use the Microsoft-variant maintainability index (scale of 0 to 100)

Configuration files

By default, complexity-report will attempt to read configuration options from a JSON file called .complexrc in the current working directory. This file should contain a JSON object with property names matching the long-form option names from the command line (the ones that follow --). Options set in this file will be over-ridden by options specified on the command line.

See an example configuration file.

You can also specify an alternative path to this file using the -c command-line option.

Output formats

Currently there are five output formats supported: plain, markdown, minimal, json, and xml. These are loaded from the src/formats subdirectory. If the format file is not found in that directory, a second attempt will be made to load the module without the subdirectory prefix, more easily enabling the use of custom formats if so desired.

Adding new formats is simple; each one must be a CommonJS module, which exports a function named format. The format function should take a report object, as defined by escomplex, and return its string representation of the report.

See the plain formatter for an example.

Development

See the contribution guidelines.

License

MIT