npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

combinators-js

v3.0.0

Published

Some combinators

Downloads

32

Readme

combinators-js

npm version Build Status

Getting Started

Install (other package managers are available):

npm i -S combinators-js

Import (other module systems are available):

import {
  B, B1, B2, B3, C, C_, C__, D, D1, D2, E, F, F_, F__ G, H, I, I_, I__, J, K, L,
  M, M2, O, Q, Q1, Q2, Q3, Q4, R, R_, R__, S, T, U, V, V_, V__, W, W_, W__, W1, Y,
} from 'combinators-js'

Definitions

Here are the included combinators with their definitions:

const B = a => b => c => a(b(c))
const B1 = a => b => c => d => a(b(c)(d))
const B2 = a => b => c => d => e => a(b(c)(d)(e))
const B3 = a => b => c => d => a(b(c(d)))
const C = a => b => c => a(c)(b)
const C_ = a => b => c => d => a(b)(d)(c)
const C__ = a => b => c => d => e => a(b)(c)(e)(d)
const D = a => b => c => d => a(b)(c(d))
const D1 = a => b => c => d => e => a(b)(c)(d(e))
const D2 = a => b => c => d => e => a(b(c))(d(e))
const E = a => b => c => d => e => a(b)(c(d)(e))
const F = a => b => c => c(b)(a)
const F_ = a => b => c => d => a(d)(c)(b)
const F__ = a => b => c => d => e => a(b)(e)(d)(c)
const G = a => b => c => d => a(d)(b(c))
const H = a => b => c => a(b)(c)(b)
const I = a => a
const I_ = a => b => a(b)
const I__ = a => b => c => a(b)(c)
const J = a => b => c => d => a(b)(a(d)(c))
const K = a => b => a
const L = a => b => a(b(b))
const M = a => a(a)
const M2 = a => b => a(b)(a(b))
const O = a => b => b(a(b))
const Q = a => b => c => b(a(c))
const Q1 = a => b => c => a(c(b))
const Q2 = a => b => c => b(c(a))
const Q3 = a => b => c => c(a(b))
const Q4 = a => b => c => c(b(a))
const R = a => b => c => b(c)(a)
const R_ = a => b => c => d => a(c)(d)(b)
const R__ = a => b => c => d => e => a(b)(d)(e)(c)
const S = a => b => c => a(c)(b(c))
const T = a => b => b(a)
const U = a => b => b(a(a)(b))
const V = a => b => c => c(a)(b)
const V_ = a => b => c => d => a(c)(b)(d)
const V__ = a => b => c => d => e => a(b)(e)(c)(d)
const W = a => b => a(b)(b)
const W_ = a => b => c => a(b)(c)(c)
const W__ = a => b => c => d => a(b)(c)(d)(d)
const W1 = a => b => b(a)(a)
const Y = a => (b => b(b))(b => a(c => b(b)(c)))

Tests

test('B')(S(K(S))(K))
test('B1')(S(K(S(K(S))(K)))(S(K(S))(K)))
test('B2')(S(K(S(K(S(K(S))(K)))(S(K(S))(K))))(S(K(S))(K)))
test('C')(S(S(K(S(K(S))(K)))(S))(K(K)))
test('C_')(S(K(S(S(K(S(K(S))(K)))(S))(K(K)))))
test('C__')(S(K(S(K(S(S(K(S(K(S))(K)))(S))(K(K)))))))
test('D')(S(K(S(K(S))(K))))
test('D1')(S(K(S(K(S(K(S))(K))))))
test('D2')(S(K(S(K(S))(K)))(S(K(S(K(S))(K)))))
test('E')(S(K(S(K(S(K(S))(K)))(S(K(S))(K)))))
test('F')(S(K(S(S(K)(K))(K(S(K(S(S(K)(K))))(K)))))(S(K(S(K(S(K(S))(K)))(S(K(S))(K))))(S(K(S(S(K)(K))))(K))))
test('F_')(S(K(S(K(S(S(K(S(K(S))(K)))(S))(K(K))))))(S(K(S(S(K(S(K(S))(K)))(S))(K(K))))(S(K(S(S(K(S(K(S))(K)))(S))(K(K)))))))
test('F__')(S(K(S(K(S(K(S(S(K(S(K(S))(K)))(S))(K(K))))))(S(K(S(S(K(S(K(S))(K)))(S))(K(K))))(S(K(S(S(K(S(K(S))(K)))(S))(K(K)))))))))
test('G')(S(K(S(K(S))(K)))(S(S(K(S(K(S))(K)))(S))(K(K))))
test('H')(S(K(S(K(S(S(K(S(S(K)(K))(S(K)(K))))(S(K(S(K(S))(K)))(S(K(S(S(K)(K))))(K))))))(K)))(S(K(S(S(K(S(K(S))(K)))(S))(K(K))))))
test('I')(S(K)(K))
test('I_')(S(S(K)))
test('J')(S(K(S(K(S(S(K(S(K(S))(K)))(S))(K(K))))))(S(S(K(S(S(K)(K))(S(K)(K))))(S(K(S(K(S))(K)))(S(K(S(S(K)(K))))(K))))(K(S(K(S(S(K(S(K(S))(K)))(S))(K(K))))(S(K(S(K(S(K(S))(K)))(S(K(S))(K)))))))))
test('K')(K)
test('L')(S(S(K(S))(K))(K(S(S(K)(K))(S(K)(K)))))
test('M')(S(S(K)(K))(S(K)(K)))
test('M2')(S(K(S(S(K)(K))(S(K)(K)))))
test('O')(S(S(K)(K)))
test('Q')(S(K(S(S(K(S))(K))))(K))
test('Q1')(S(K(S(S(K(S(K(S))(K)))(S))(K(K))))(S(K(S))(K)))
test('Q2')(S(K(S(S(K(S(S(K(S(K(S))(K)))(S))(K(K))))(S(K(S))(K)))))(K))
test('Q3')(S(K(S(K(S(S(K)(K))))(K))))
test('Q4')(S(K(S(S(K(S(K(S))(K)))(S))(K(K))))(S(K(S(S(K(S(S(K(S(K(S))(K)))(S))(K(K))))(S(K(S))(K)))))(K)))
test('R')(S(K(S(K(S))(K)))(S(K(S(S(K)(K))))(K)))
test('R_')(S(K(S(S(K(S(K(S))(K)))(S))(K(K))))(S(K(S(S(K(S(K(S))(K)))(S))(K(K))))))
test('R__')(S(K(S(K(S(S(K(S(K(S))(K)))(S))(K(K))))(S(K(S(S(K(S(K(S))(K)))(S))(K(K))))))))
test('S')(S)
test('T')(S(K(S(S(K)(K))))(K))
test('U')(S(K(S(S(K)(K))))(S(S(K)(K))(S(K)(K))))
test('V')(S(K(S(S(K(S(K(S))(K)))(S))(K(K))))(S(K(S(S(K)(K))))(K)))
test('V_')(S(K(S(K(S(S(K(S(K(S))(K)))(S))(K(K))))(S(K(S(K(S(S(K(S(K(S))(K)))(S))(K(K))))))(S(K(S(S(K(S(K(S))(K)))(S))(K(K))))(S(K(S(S(K(S(K(S))(K)))(S))(K(K))))))))))
test('W')(S(K(S(S(K(S(S(K)(K))(S(K)(K))))(S(K(S(K(S))(K)))(S(K(S(S(K)(K))))(K))))))(K))
test('W_')(S(K(S(K(S(S(K(S(S(K)(K))(S(K)(K))))(S(K(S(K(S))(K)))(S(K(S(S(K)(K))))(K))))))(K))))
test('W__')(S(K(S(K(S(K(S(S(K(S(S(K)(K))(S(K)(K))))(S(K(S(K(S))(K)))(S(K(S(S(K)(K))))(K))))))(K))))))
test('W1')(S(K(S(S(K(S(S(K(S(S(K)(K))(S(K)(K))))(S(K(S(K(S))(K)))(S(K(S(S(K)(K))))(K))))))(K))))(K))

Ideas

// LISP data structures
const KI = K(I)
const cons = (a, b) => V(a)(b) // manual uncurry
const car = T(K)
const cdr = T(KI)

console.log(car(cons(0, 1))) // => 0
console.log(cdr(cons(0, 1))) // => 1

const nil = () => {}
const list = (...args) => args.reduce((l, arg) => V(arg)(l), nil)
const reverse = (l, m = nil) => l === nil ? m : reverse(l(KI), V(l(K))(m))
const reduce = f => l => m => l(KI) === undefined ? m : f(reduce(f)(l(KI))(m))(l(K))
const map = f => l => reduce(acc => val => V(f(val))(acc))(l)(nil)
const length = l => reduce(acc => val => 1 + acc)(l)(0)
const filter = f => l => reduce(acc => val => f(val) ? V(val)(acc) : acc)(l)(nil)

const arbitraryList = list(0, 1, 2, 3, 4, 5)

console.log(length(arbitraryList)) // => 6

const reduced = reduce(acc => val => V(val)(acc))(arbitraryList)(nil)
const filtered = filter(x => x > 2)(reduced)
const mapped = map(x => x ** 2)(filtered)
const reversed = reverse(mapped)

console.log(length(reversed)) // => 3
map(::console.log)(reversed) // => 25 16 9
// recursion of anonymous functions
Y(recur => x => x === 1 ? 1 : x * recur(x - 1))(5) // => 120

// TCO'd recursion of anonymous functions using a modified Y
// taking a variadic non-combinator function
const Y_ = a => (b => a((...c) => b(b)(...c)))(b => a((...c) => b(b)(...c)))
Y_(recur => (x, y = 1) => x === 1 ? y : recur(x - 1, x * y))(5) // => 120
// omega bird (mock a mockingbird)
M(M)

Practical Ideas

¯\_(ツ)_/¯

See Also

I built a Church encoding library too.

Further Reading