npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

codeoncoffee-quick-pivot

v2.5.0

Published

a utility for quickly pivoting data

Downloads

1

Readme

NPM

npm version Build Status Coverage Status Code Climate Dependency Status

What it does

Say you have this example data set: example data

With this tool you can pivot the data given a particular row and column category: example pivot 1

Or given multiple rows and a column category: example pivot 2

Or multiple columns and a row category: example pivot 3

Or any combination of rows and/or columns

Example use

Install with npm: npm install --save quick-pivot

import Pivot from 'quick-pivot';

const dataArray = [
 ['name', 'gender', 'house', 'age'],
 ['Jon', 'm', 'Stark', 14],
 ['Arya', 'f', 'Stark', 10],
 ['Cersei', 'f', 'Baratheon', 38],
 ['Tywin', 'm', 'Lannister', 67],
 ['Tyrion', 'm', 'Lannister', 34],
 ['Joffrey', 'm', 'Baratheon', 18],
 ['Bran', 'm', 'Stark', 8],
 ['Jaime', 'm', 'Lannister', 32],
 ['Sansa', 'f', 'Stark', 12]
];

const rowsToPivot = ['name'];
const colsToPivot = ['house', 'gender'];
const aggregationDimension = 'age';
const aggregator = 'sum';

const pivot = new Pivot(dataArray, rowsToPivot, colsToPivot, aggregationDimension, aggregator);

console.log('pivot.data', pivot.data, 'pivot.data.table', pivot.data.table);

console logs:

pivot.data
{ table:
   [ { value: [Object], depth: 0, type: 'colHeader', row: 0 },
     { value: [Object], depth: 1, type: 'colHeader', row: 1 },
     { value: [Object], type: 'data', depth: 0, row: 2 },
     { value: [Object], type: 'data', depth: 0, row: 3 },
     { value: [Object], type: 'data', depth: 0, row: 4 },
     { value: [Object], type: 'data', depth: 0, row: 5 },
     { value: [Object], type: 'data', depth: 0, row: 6 },
     { value: [Object], type: 'data', depth: 0, row: 7 },
     { value: [Object], type: 'data', depth: 0, row: 8 },
     { value: [Object], type: 'data', depth: 0, row: 9 },
     { value: [Object], type: 'data', depth: 0, row: 10 },
     { value: [Object], type: 'aggregated' } ],
  rawData:
   [ { value: [Object], depth: 0, type: 'colHeader', row: 0 },
     { value: [Object], depth: 1, type: 'colHeader', row: 1 },
     { value: [Object], type: 'data', depth: 0 },
     { value: [Object], type: 'data', depth: 0 },
     { value: [Object], type: 'data', depth: 0 },
     { value: [Object], type: 'data', depth: 0 },
     { value: [Object], type: 'data', depth: 0 },
     { value: [Object], type: 'data', depth: 0 },
     { value: [Object], type: 'data', depth: 0 },
     { value: [Object], type: 'data', depth: 0 },
     { value: [Object], type: 'data', depth: 0 } ] }

pivot.data.table
[ { value:
     [ 'sum age',
       'Stark',
       'Stark',
       'Baratheon',
       'Baratheon',
       'Lannister',
       'aggregated' ],
    depth: 0,
    type: 'colHeader',
    row: 0 },
  { value: [ 'sum age', 'f', 'm', 'f', 'm', 'm', '' ],
    depth: 1,
    type: 'colHeader',
    row: 1 },
  { value: [ 'Arya', 10, '', '', '', '', 10 ],
    type: 'data',
    depth: 0,
    row: 2 },
  { value: [ 'Bran', '', 8, '', '', '', 8 ],
    type: 'data',
    depth: 0,
    row: 3 },
  { value: [ 'Cersei', '', '', 38, '', '', 38 ],
    type: 'data',
    depth: 0,
    row: 4 },
  { value: [ 'Jaime', '', '', '', '', 32, 32 ],
    type: 'data',
    depth: 0,
    row: 5 },
  { value: [ 'Joffrey', '', '', '', 18, '', 18 ],
    type: 'data',
    depth: 0,
    row: 6 },
  { value: [ 'Jon', '', 14, '', '', '', 14 ],
    type: 'data',
    depth: 0,
    row: 7 },
  { value: [ 'Sansa', 12, '', '', '', '', 12 ],
    type: 'data',
    depth: 0,
    row: 8 },
  { value: [ 'Tyrion', '', '', '', '', 34, 34 ],
    type: 'data',
    depth: 0,
    row: 9 },
  { value: [ 'Tywin', '', '', '', '', 67, 67 ],
    type: 'data',
    depth: 0,
    row: 10 },
  { value: [ '', 22, 22, 38, 18, 133, '' ], type: 'aggregated' } ]

API

Pivot data value

The data value returns an object with keys table and rawData. table is an array of objects with each object containing four keys (except for the last object which is an aggregated row of all the previous data rows based on the selected aggregation function):

  1. value - Array which contains the result of the pivot to be rendered
  2. type - Enumerated string describing what this data row contains, [data, rowHeader, or colHeader]
  3. depth - Number describing how deeply nested the row is within a parent row
  4. row - Number describing the original row index within the table

rawData is an array of objects with three keys:

  1. value - Array which contains the data that makes up that particular row
  2. type - Enumerated string describing what this data row contains, [data, rowHeader, or colHeader]
  3. depth - Number describing how deeply nested the row is within a parent row

Syntax

Note: If modules are not supported in your environment, you can also require var Pivot = require('quick-pivot');

import Pivot from 'quick-pivot';

const pivot = new Pivot(dataArray, rows, columns, [aggregationDimension or CBfunction], [aggregator or initialValue], rowHeader);

First way to use it:

  • dataArray required is one of the following:
    • array of arrays ( the array in first index is assumed to be your headers, see the example above)
    • array of objects (the keys of each object are the headers)
    • a single array (a single column of data where the first element is the header)
  • rows is an array of strings (the rows you want to pivot on) or an empty array required
  • columns is an array of strings (the columns you want to pivot on) or an empty array required
  • aggregationDimension is a string (the category you want to accumulate values for) required
  • aggregator is an enumerated string - either 'sum', 'count', 'min', 'max', or 'average' (the type of accumulation you want to perform). If no type is selected, 'count' is chosen by default
  • rowHeader is a string (this value will appear above the rows)

Second way to use it:

Parameters are the same as the first except for two, aggregationDimension and aggregator. Instead of aggregationDimension and aggregator, you can use the following:

  • CBfunction is a callback function that receives four parameters CBfunction(acc, curr, index, arr) where acc is an accumulation value, curr is the current element being processed, index is the index of the current element being processed and arr is the array that is being acted on. This function must return the accumulation value (this is very similar to javascript's .reduce) required
  • initialValue is the starting value for the callback function. If no starting value is selected, 0 is used by default.

Methods/Instance Variables

.data

Instance variable that returns the data array shown above

.update(dataArray, rows, columns, [aggregationDimension or CBfunction], [aggregator or initialValue], rowHeader)

Updates the .data instance variable. The update method is chainable.

.collapse(rowNum)

Collapses data into the specified row header provided. rowNum is the row header's current index within the table (Not the original row index that is provided in the object). The collapse method is chainable

.expand(rowNum)

Expands collapsed data that has previously been collapsed. The expand method is chainable.

.toggle(rowNum)

Toggles data from collapsed to expanded or vice-versa. The toggle method is chainable.

.getData(rowNum)

Returns the data that comprises a collapsed row

.getUniqueValues(fieldName)

Returns all the unique values for a particular field as an array

.filter([fieldName or CBfunction], filterValues, [filterType])

Filters out values based on either:

  • string fieldName field to filter on, array filterValues values to filter, string filterType optional enumerated string either 'include' or 'exclude' (defaults to exclude if not provided)
  • function CBfunction(element, index, array) which iterates over each element in array (similar to Javascript array .filter method)

Example with callback function

Check out the test spec for more examples.

import Pivot from 'quick-pivot';

function cbFunc(acc, curr, index, arr){
  acc += curr.age;
  if(index === arr.length - 1) return acc / arr.length;
  return acc;
}
const pivot = new Pivot(dataArray, ['gender'], ['house'], cbFunc, 0, 'average age');

console.log(pivot.data.table);
/*
[ { value: [ 'average age', 'Stark', 'Baratheon', 'Lannister', 'aggregated' ],
    depth: 0,
    type: 'colHeader',
    row: 0 },
  { value: [ 'f', 11, 38, '', 20 ], type: 'data', depth: 0, row: 1 },
  { value: [ 'm', 11, 18, 44.333333333333336, 28.833333333333332 ],
    type: 'data',
    depth: 0,
    row: 2 },
  { value: [ '', 11, 28, 44.333333333333336, '' ],
    type: 'aggregated' } ]
*/

pivot.update(dataArray, ['gender', 'name'], ['house'], cbFunc, 0, 'average age')

console.log(pivot.data.table);
/*
[ { value: [ 'average age', 'Stark', 'Baratheon', 'Lannister', 'aggregated' ],
    depth: 0,
    type: 'colHeader',
    row: 0 },
  { value: [ 'f', 11, 38, '', '' ],
    depth: 0,
    type: 'rowHeader',
    row: 1 },
  { value: [ 'Arya', 10, '', '', 10 ],
    type: 'data',
    depth: 1,
    row: 2 },
  { value: [ 'Cersei', '', 38, '', 38 ],
    type: 'data',
    depth: 1,
    row: 3 },
  { value: [ 'Sansa', 12, '', '', 12 ],
    type: 'data',
    depth: 1,
    row: 4 },
  { value: [ 'm', 11, 18, 44.333333333333336, '' ],
    depth: 0,
    type: 'rowHeader',
    row: 5 },
  { value: [ 'Bran', 8, '', '', 8 ],
    type: 'data',
    depth: 1,
    row: 6 },
  { value: [ 'Jaime', '', '', 32, 32 ],
    type: 'data',
    depth: 1,
    row: 7 },
  { value: [ 'Joffrey', '', 18, '', 18 ],
    type: 'data',
    depth: 1,
    row: 8 },
  { value: [ 'Jon', 14, '', '', 14 ],
    type: 'data',
    depth: 1,
    row: 9 },
  { value: [ 'Tyrion', '', '', 34, 34 ],
    type: 'data',
    depth: 1,
    row: 10 },
  { value: [ 'Tywin', '', '', 67, 67 ],
    type: 'data',
    depth: 1,
    row: 11 },
  { value: [ '', 11, 28, 44.333333333333336, '' ],
    type: 'aggregated' } ]
*/

pivot.collapse(1);

console.log(pivot.data.table);
/*
[ { value: [ 'average age', 'Stark', 'Baratheon', 'Lannister', 'aggregated' ],
    depth: 0,
    type: 'colHeader',
    row: 0 },
  { value: [ 'f', 11, 38, '', '' ],
    depth: 0,
    type: 'rowHeader',
    row: 1 },
  { value: [ 'm', 11, 18, 44.333333333333336, '' ],
    depth: 0,
    type: 'rowHeader',
    row: 5 },
  { value: [ 'Bran', 8, '', '', 8 ],
    type: 'data',
    depth: 1,
    row: 6 },
  { value: [ 'Jaime', '', '', 32, 32 ],
    type: 'data',
    depth: 1,
    row: 7 },
  { value: [ 'Joffrey', '', 18, '', 18 ],
    type: 'data',
    depth: 1,
    row: 8 },
  { value: [ 'Jon', 14, '', '', 14 ],
    type: 'data',
    depth: 1,
    row: 9 },
  { value: [ 'Tyrion', '', '', 34, 34 ],
    type: 'data',
    depth: 1,
    row: 10 },
  { value: [ 'Tywin', '', '', 67, 67 ],
    type: 'data',
    depth: 1,
    row: 11 },
  { value: [ '', 11, 28, 44.333333333333336, '' ],
    type: 'aggregated' } ]
*/

console.log(pivot.getData(1));
/*
[ { value: [ 'Arya', [Array], '', '' ], type: 'data', depth: 1 },
  { value: [ 'Cersei', '', [Array], '' ], type: 'data', depth: 1 },
  { value: [ 'Sansa', [Array], '', '' ], type: 'data', depth: 1 } ]
*/

console.log(pivot.getData(1)[0].value)
/*
[ 'Arya',
  [ { name: 'Arya', gender: 'f', house: 'Stark', age: 10 } ],
  '',
  '' ]
*/

pivot.collapse(2);

console.log(pivot.data.table);
/*
[ { value: [ 'average age', 'Stark', 'Baratheon', 'Lannister', 'aggregated' ],
    depth: 0,
    type: 'colHeader',
    row: 0 },
  { value: [ 'f', 11, 38, '', '' ],
    depth: 0,
    type: 'rowHeader',
    row: 1 },
  { value: [ 'm', 11, 18, 44.333333333333336, '' ],
    depth: 0,
    type: 'rowHeader',
    row: 5 },
  { value: [ '', 11, 28, 44.333333333333336, '' ],
    type: 'aggregated' } ]
*/

pivot.expand(1);
console.log(pivot.data.table);
/*
[ { value: [ 'average age', 'Stark', 'Baratheon', 'Lannister', 'aggregated' ],
    depth: 0,
    type: 'colHeader',
    row: 0 },
  { value: [ 'f', 11, 38, '', '' ],
    depth: 0,
    type: 'rowHeader',
    row: 1 },
  { value: [ 'Arya', 10, '', '', 10 ],
    type: 'data',
    depth: 1,
    row: 2 },
  { value: [ 'Cersei', '', 38, '', 38 ],
    type: 'data',
    depth: 1,
    row: 3 },
  { value: [ 'Sansa', 12, '', '', 12 ],
    type: 'data',
    depth: 1,
    row: 4 },
  { value: [ 'm', 11, 18, 44.333333333333336, '' ],
    depth: 0,
    type: 'rowHeader',
    row: 5 },
  { value: [ '', 11, 28, 44.333333333333336, '' ],
    type: 'aggregated' } ]

Changes

Check out the change log