npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

cocolour

v0.1.0

Published

Color schemes generator based on machine learning

Downloads

0

Readme

Cocolour

Color schemes generator based on machine learning

Development

sudo npm install -g grunt-cli
npm install

Build

grunt build

Watch

grunt watch

License

Copyright (C) 2014 Zeno Zeng

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.

This program incorporates work covered by the following copyright and permission notices:

  • jQuery

    Copyright 2005, 2014 jQuery Foundation, Inc. and other contributors

    Released under the MIT license

  • color-convert

    Copyright (c) 2011 Heather Arthur [email protected]

    Released under the MIT license

  • colors-clustering

    Copyright (C) 2014 Zeno Zeng

    Released under the MIT license

  • gene-pool

    Copyright (C) 2014 Zeno Zeng

    Released under the MIT license

  • brain

    Copyright (c) 2010 Heather Arthur

    Released under the MIT license

项目日程

2014-10-20 -- 2014-11-09

  • 确定神经网络库的选择为 Brain

  • 确定输入格式为一个 HSL 矩阵的 flatten: H1 S1 L1 H2 S2 L2 H3 S3 L3 H4 S4 L4 H5 S5 L5

    See also: https://github.com/zenozeng/cocolour/issues/72

  • 一次概念验证性测试

    Length:  164
    Match Cound:  106
    Unmatch Cound:  58
    Rate(%):  64.63414634146342

    具体的测试详情:https://github.com/zenozeng/cocolour/issues/76

  • 确定输出格式

    似乎喜欢和讨厌的机制是很不一样的, 所以他们应该被丢到两个堆中去。

    如果直接用单个score输出,正确率非常低,只有30%-40% 如果用 [喜欢,不喜欢,一般] 输出,大概60-61%, 以及一般这一档的数据非常少,不怎么可靠。 如果用 [喜欢, 不喜欢],大概60-68%

    具体的测试详情:https://github.com/zenozeng/cocolour/issues/77

  • 增加数据到 813 组

  • 数据分组成 train 和 verify 组的时候引入随机性

    https://github.com/zenozeng/cocolour/issues/81

    这个 Issue 会导致之前的测定结果存在一定的偏差

  • 增加数据到 1378 组

  • 调整 learningRate 到 0.1

    似乎结果的稳定性提升了一些、正确率也提升了一些

  • 基于 master-slave 的多进程结果验证

    充分利用多核性能

  • 尝试引入色相方差、饱和度方差、明度方差

    [ { tests: 242, passed: 153, rate: 0.6322314049586777 },
      { tests: 242, passed: 165, rate: 0.6818181818181818 },
      { tests: 242, passed: 140, rate: 0.5785123966942148 },
      { tests: 242, passed: 168, rate: 0.6942148760330579 },
      { tests: 242, passed: 162, rate: 0.6694214876033058 },
      { tests: 242, passed: 161, rate: 0.6652892561983471 },
      { tests: 242, passed: 147, rate: 0.6074380165289256 },
      { tests: 242, passed: 155, rate: 0.640495867768595 },
      { tests: 242, passed: 166, rate: 0.6859504132231405 },
      { tests: 242, passed: 163, rate: 0.6735537190082644 },
      { tests: 242, passed: 156, rate: 0.6446280991735537 },
      { tests: 242, passed: 157, rate: 0.6487603305785123 } ]
    { tests: 2904, passed: 1893, rate: 0.6518595041322314 }
    [ { tests: 242, passed: 157, rate: 0.6487603305785123 },
      { tests: 242, passed: 157, rate: 0.6487603305785123 },
      { tests: 242, passed: 151, rate: 0.6239669421487604 },
      { tests: 242, passed: 159, rate: 0.6570247933884298 },
      { tests: 242, passed: 163, rate: 0.6735537190082644 },
      { tests: 242, passed: 160, rate: 0.6611570247933884 },
      { tests: 242, passed: 171, rate: 0.7066115702479339 },
      { tests: 242, passed: 154, rate: 0.6363636363636364 },
      { tests: 242, passed: 158, rate: 0.6528925619834711 },
      { tests: 242, passed: 160, rate: 0.6611570247933884 },
      { tests: 242, passed: 170, rate: 0.7024793388429752 },
      { tests: 242, passed: 167, rate: 0.6900826446280992 } ]
    { tests: 2904, passed: 1927, rate: 0.6635674931129476 }
  • 调整学习速率到 0.05

    [ { tests: 242, passed: 157, rate: 0.6487603305785123 },
      { tests: 242, passed: 165, rate: 0.6818181818181818 },
      { tests: 242, passed: 145, rate: 0.5991735537190083 },
      { tests: 242, passed: 153, rate: 0.6322314049586777 },
      { tests: 242, passed: 160, rate: 0.6611570247933884 },
      { tests: 242, passed: 159, rate: 0.6570247933884298 },
      { tests: 242, passed: 157, rate: 0.6487603305785123 },
      { tests: 242, passed: 159, rate: 0.6570247933884298 },
      { tests: 242, passed: 146, rate: 0.6033057851239669 },
      { tests: 242, passed: 154, rate: 0.6363636363636364 },
      { tests: 242, passed: 160, rate: 0.6611570247933884 },
      { tests: 242, passed: 158, rate: 0.6528925619834711 } ]
      { tests: 2904, passed: 1873, rate: 0.6449724517906336 }
    // SLAVE#64 closed
    [ { tests: 242, passed: 151, rate: 0.6239669421487604 },
      { tests: 242, passed: 159, rate: 0.6570247933884298 },
      { tests: 242, passed: 150, rate: 0.6198347107438017 },
      { tests: 242, passed: 158, rate: 0.6528925619834711 },
      { tests: 242, passed: 166, rate: 0.6859504132231405 },
      { tests: 242, passed: 150, rate: 0.6198347107438017 },
      { tests: 242, passed: 156, rate: 0.6446280991735537 },
      { tests: 242, passed: 162, rate: 0.6694214876033058 },
      { tests: 242, passed: 163, rate: 0.6735537190082644 },
      { tests: 242, passed: 162, rate: 0.6694214876033058 },
      { tests: 242, passed: 141, rate: 0.5826446280991735 },
      { tests: 242, passed: 160, rate: 0.6611570247933884 },
      { tests: 242, passed: 146, rate: 0.6033057851239669 },
      { tests: 242, passed: 159, rate: 0.6570247933884298 },
      { tests: 242, passed: 153, rate: 0.6322314049586777 },
      { tests: 242, passed: 150, rate: 0.6198347107438017 },
      { tests: 242, passed: 162, rate: 0.6694214876033058 },
      { tests: 242, passed: 155, rate: 0.640495867768595 },
      { tests: 242, passed: 151, rate: 0.6239669421487604 },
      { tests: 242, passed: 154, rate: 0.6363636363636364 },
      { tests: 242, passed: 152, rate: 0.628099173553719 },
      { tests: 242, passed: 151, rate: 0.6239669421487604 },
      { tests: 242, passed: 156, rate: 0.6446280991735537 },
      { tests: 242, passed: 156, rate: 0.6446280991735537 },
      { tests: 242, passed: 158, rate: 0.6528925619834711 },
      { tests: 242, passed: 158, rate: 0.6528925619834711 },
      { tests: 242, passed: 157, rate: 0.6487603305785123 },
      { tests: 242, passed: 159, rate: 0.6570247933884298 },
      { tests: 242, passed: 157, rate: 0.6487603305785123 },
      { tests: 242, passed: 152, rate: 0.628099173553719 },
      { tests: 242, passed: 158, rate: 0.6528925619834711 },
      { tests: 242, passed: 149, rate: 0.6157024793388429 },
      { tests: 242, passed: 163, rate: 0.6735537190082644 },
      { tests: 242, passed: 155, rate: 0.640495867768595 },
      { tests: 242, passed: 154, rate: 0.6363636363636364 },
      { tests: 242, passed: 166, rate: 0.6859504132231405 },
      { tests: 242, passed: 153, rate: 0.6322314049586777 },
      { tests: 242, passed: 154, rate: 0.6363636363636364 },
      { tests: 242, passed: 161, rate: 0.6652892561983471 },
      { tests: 242, passed: 156, rate: 0.6446280991735537 },
      { tests: 242, passed: 150, rate: 0.6198347107438017 },
      { tests: 242, passed: 156, rate: 0.6446280991735537 },
      { tests: 242, passed: 160, rate: 0.6611570247933884 },
      { tests: 242, passed: 146, rate: 0.6033057851239669 },
      { tests: 242, passed: 157, rate: 0.6487603305785123 },
      { tests: 242, passed: 159, rate: 0.6570247933884298 },
      { tests: 242, passed: 150, rate: 0.6198347107438017 },
      { tests: 242, passed: 150, rate: 0.6198347107438017 },
      { tests: 242, passed: 162, rate: 0.6694214876033058 },
      { tests: 242, passed: 154, rate: 0.6363636363636364 },
      { tests: 242, passed: 161, rate: 0.6652892561983471 },
      { tests: 242, passed: 155, rate: 0.640495867768595 },
      { tests: 242, passed: 154, rate: 0.6363636363636364 },
      { tests: 242, passed: 167, rate: 0.6900826446280992 },
      { tests: 242, passed: 160, rate: 0.6611570247933884 },
      { tests: 242, passed: 151, rate: 0.6239669421487604 },
      { tests: 242, passed: 161, rate: 0.6652892561983471 },
      { tests: 242, passed: 157, rate: 0.6487603305785123 },
      { tests: 242, passed: 156, rate: 0.6446280991735537 },
      { tests: 242, passed: 151, rate: 0.6239669421487604 },
      { tests: 242, passed: 162, rate: 0.6694214876033058 },
      { tests: 242, passed: 156, rate: 0.6446280991735537 },
      { tests: 242, passed: 155, rate: 0.640495867768595 },
      { tests: 242, passed: 160, rate: 0.6611570247933884 } ]
    { tests: 15488, passed: 9983, rate: 0.6445635330578512 }
  • [TODO] Verify 的断点续跑

  • [TODO] Verify 时间记录

  • [TODO] Verify 中途查看结果

2014-10-13 -- 2014-10-19

  • Fix bugs in UI

  • Script for fetching all color schemes in database

  • 500+ more color schemes

  • Normalize colors

2014-10-06 -- 2014-10-12

  • 引入 AVOS Cloud SDK

  • user.signup, user.login, user.logout & user.passwordReset

  • DB: Class Scheme

  • ACL for Scheme

  • Log heart and trash

2014-08-18 -- 2014-08-24

  • 神经网络库的选择讨论

    See also: https://github.com/zenozeng/cocolour/issues/53

  • 界面增加动画

  • 尝试引入遗传算法,以便在更短时间获得更好结果

  • 构建遗传算法库

    https://github.com/zenozeng/gene-pool

  • Move static/font-awesome to cdn.staticfile.org

  • 各家 Baas 服务商的比较,打算使用 avoscloud

    https://cn.avoscloud.com/docs/js_guide.html

  • 遗传算法可视化

    http://zenozeng.github.io/gene-pool/demo/

  • 引入遗传算法 ([email protected])

2014-08-11 -- 2014-08-17

  • Go back using CoffeeScript

    See also https://github.com/zenozeng/cocolour/issues/37

  • update header, fixes #41

  • 聚类算法可视化 (D3)

    https://github.com/zenozeng/colors-clustering-visualization

2014-06-23 -- 2014-06-29

  • About whether to use DBaaS or Baas

    See also https://github.com/zenozeng/cocolour/issues/46

    See also https://github.com/zenozeng/cocolour/issues/44

  • Consider using Genetic Algorithms

    See also https://github.com/zenozeng/cocolour/issues/49

2014-06-16 -- 2014-06-22

  • Consider using Web Worker

  • New Arch Design (ClojureScript for Pure Calculation & CoffeeScript for UI and Communication)

2014-06-09 -- 2014-06-15

  • 关于应用容器化的构想,及相关服务提供商的比较

    Linode + Ubuntu + Docker / DigitalOcean + Ubuntu + Docker / Stackdock / Tutum

2014-06-02 -- 2014-06-08

  • New UI Design for colors clustering (in Zeno's loose notes 2014-06-08)

2014-05-12 -- 2014-05-18

  • Simple JSON based user system

  • Simple loging system for replaying requests later

2014-05-05 -- 2014-05-11

  • New name: cocolour

  • New domain: cocolour.com

  • Deploy on Github Pages

  • Move clustering/ to new repo: zenozeng/colors-clustering

  • Use seeds from CSS Color Module Level 3

  • Use CIEDE2000 for calc color difference

  • Add RGBA Support for Colors Clustering

  • Switch to CIE67 for perfermence

    see https://github.com/zenozeng/colors-clustering/issues/7

  • Add nodejs support for colors-clustering

  • Npm publish zenozeng/colors-clustering

  • Rewrite cocolour using zenozeng/colors-clustering

  • New UI for cocolour

  • Use Grunt as task runner

  • UI for 1920 * 1080

  • New Repo: cocolour-server

2014-04-28 -- 2014-05-04

  • 基于 K-Means 算法以及 HSL 色彩空间实现基本色彩聚类

  • Init UI (based on HTML5 drag & drop API)

2014-03-17 -- 2014-04-27

  • 基本调研

  • 初始化项目

  • 服务器基本部署

  • 色彩聚类代码初步

2014-03-05 -- 2014-03-16

  • Init Repo