classic-level-mcpe
v1.4.2
Published
An abstract-level database backed by LevelDB, ported to MCPE (Bedrock).
Downloads
8
Readme
classic-level-mcpe
An abstract-level
database backed by LevelDB ported to MCPE (Bedrock). The successor to leveldown
with builtin encodings, sublevels, events, promises and support of Uint8Array. If you are upgrading please see UPGRADING.md
.
IMPORTANT: This is a fork of Level/classic-level with the following changes:
- Replaced the original 1.20 leveldb with the 1.17 version from MCPE;
- Added support for Zlib compression;
- Deleted the original Snappy compression.
:pushpin: Which module should I use? What is
abstract-level
? Head over to the FAQ.
Table of Contents
- Usage
- Supported Platforms
- API
db = new ClassicLevel(location[, options])
db.location
db.status
db.open([options][, callback])
db.close([callback])
db.supports
db.get(key[, options][, callback])
db.getMany(keys[, options][, callback])
db.put(key, value[, options][, callback])
db.del(key[, options][, callback])
db.batch(operations[, options][, callback])
chainedBatch = db.batch()
iterator = db.iterator([options])
keyIterator = db.keys([options])
valueIterator = db.values([options])
db.clear([options][, callback])
sublevel = db.sublevel(name[, options])
db.approximateSize(start, end[, options][, callback])
db.compactRange(start, end[, options][, callback])
db.getProperty(property)
chainedBatch
iterator
keyIterator
valueIterator
sublevel
ClassicLevel.destroy(location[, callback])
ClassicLevel.repair(location[, callback])
- Development
- Donate
- License
Usage
const { ClassicLevel } = require('classic-level')
// Create a database
const db = new ClassicLevel('./db', { valueEncoding: 'json' })
// Add an entry with key 'a' and value 1
await db.put('a', 1)
// Add multiple entries
await db.batch([{ type: 'put', key: 'b', value: 2 }])
// Get value of key 'a': 1
const value = await db.get('a')
// Iterate entries with keys that are greater than 'a'
for await (const [key, value] of db.iterator({ gt: 'a' })) {
console.log(value) // 2
}
All asynchronous methods also support callbacks.
db.put('example', { hello: 'world' }, (err) => {
if (err) throw err
db.get('example', (err, value) => {
if (err) throw err
console.log(value) // { hello: 'world' }
})
})
Usage from TypeScript requires generic type parameters.
// Specify types of keys and values (any, in the case of json).
// The generic type parameters default to ClassicLevel<string, string>.
const db = new ClassicLevel<string, any>('./db', { valueEncoding: 'json' })
// All relevant methods then use those types
await db.put('a', { x: 123 })
// Specify different types when overriding encoding per operation
await db.get<string, string>('a', { valueEncoding: 'utf8' })
// Though in some cases TypeScript can infer them
await db.get('a', { valueEncoding: db.valueEncoding('utf8') })
// It works the same for sublevels
const abc = db.sublevel('abc')
const xyz = db.sublevel<string, any>('xyz', { valueEncoding: 'json' })
Supported Platforms
We aim to support at least Active LTS and Current Node.js releases, Electron 5.0.0, as well as any future Node.js and Electron releases thanks to Node-API.
The classic-level
npm package ships with prebuilt binaries for popular 64-bit platforms as well as ARM, M1, Android, Alpine (musl), Windows 32-bit, Linux flavors with an old glibc (Debian 8, Ubuntu 14.04, RHEL 7, CentOS 7) and is known to work on:
- Linux, including ARM platforms such as Raspberry Pi and Kindle
- Mac OS (10.7 and later)
- Windows
- FreeBSD
When installing classic-level
, node-gyp-build
will check if a compatible binary exists and fallback to compiling from source if it doesn't. In that case you'll need a valid node-gyp
installation.
If you don't want to use the prebuilt binary for the platform you are installing on, specify the --build-from-source
flag when you install. One of:
npm install --build-from-source
npm install classic-level --build-from-source
If you are working on classic-level
itself and want to recompile the C++ code, run npm run rebuild
.
Note: the Android prebuilds are made for and built against Node.js core rather than the nodejs-mobile
fork.
API
The API of classic-level
follows that of abstract-level
with a few additional options and methods specific to LevelDB. The documentation below covers it all except for Encodings, Events and Errors which are exclusively documented in abstract-level
.
An abstract-level
and thus classic-level
database is at its core a key-value database. A key-value pair is referred to as an entry here and typically returned as an array, comparable to Object.entries()
.
db = new ClassicLevel(location[, options])
Create a database or open an existing database. The location
argument must be a directory path (relative or absolute) where LevelDB will store its files. If the directory does not yet exist (and options.createIfMissing
is true) it will be created recursively. The optional options
object may contain:
keyEncoding
(string or object, default'utf8'
): encoding to use for keysvalueEncoding
(string or object, default'utf8'
): encoding to use for values.
See Encodings for a full description of these options. Other options
(except passive
) are forwarded to db.open()
which is automatically called in a next tick after the constructor returns. Any read & write operations are queued internally until the database has finished opening. If opening fails, those queued operations will yield errors.
db.location
Read-only getter that returns the location
string that was passed to the constructor (as-is).
db.status
Read-only getter that returns a string reflecting the current state of the database:
'opening'
- waiting for the database to be opened'open'
- successfully opened the database'closing'
- waiting for the database to be closed'closed'
- successfully closed the database.
db.open([options][, callback])
Open the database. The callback
function will be called with no arguments when successfully opened, or with a single error argument if opening failed. The database has an exclusive lock (on disk): if another process or instance has already opened the underlying LevelDB store at the given location
then opening will fail with error code LEVEL_LOCKED
. If no callback is provided, a promise is returned. Options passed to open()
take precedence over options passed to the database constructor.
The optional options
object may contain:
createIfMissing
(boolean, default:true
): Iftrue
, create an empty database if one doesn't already exist. Iffalse
and the database doesn't exist, opening will fail.errorIfExists
(boolean, default:false
): Iftrue
and the database already exists, opening will fail.passive
(boolean, default:false
): Wait for, but do not initiate, opening of the database.multithreading
(boolean, default:false
): Allow multiple threads to access the database. This is only relevant when using worker threads
For advanced performance tuning, the options
object may also contain the following. Modify these options only if you can prove actual benefit for your particular application.
compression
(boolean, default:true
): Unless set tofalse
, all compressible data will be run through the Snappy compression algorithm before being stored. Snappy is very fast so leave this on unless you have good reason to turn it off.cacheSize
(number, default:8 * 1024 * 1024
): The size (in bytes) of the in-memory LRU cache with frequently used uncompressed block contents.writeBufferSize
(number, default:4 * 1024 * 1024
): The maximum size (in bytes) of the log (in memory and stored in the.log
file on disk). Beyond this size, LevelDB will convert the log data to the first level of sorted table files. From LevelDB documentation:Larger values increase performance, especially during bulk loads. Up to two write buffers may be held in memory at the same time, so you may wish to adjust this parameter to control memory usage. Also, a larger write buffer will result in a longer recovery time the next time the database is opened.
blockSize
(number, default:4096
): The approximate size of the blocks that make up the table files. The size relates to uncompressed data (hence "approximate"). Blocks are indexed in the table file and entry-lookups involve reading an entire block and parsing to discover the required entry.maxOpenFiles
(number, default:1000
): The maximum number of files that LevelDB is allowed to have open at a time. If your database is likely to have a large working set, you may increase this value to prevent file descriptor churn. To calculate the number of files required for your working set, divide your total data size bymaxFileSize
.blockRestartInterval
(number, default:16
): The number of entries before restarting the "delta encoding" of keys within blocks. Each "restart" point stores the full key for the entry, between restarts, the common prefix of the keys for those entries is omitted. Restarts are similar to the concept of keyframes in video encoding and are used to minimise the amount of space required to store keys. This is particularly helpful when using deep namespacing / prefixing in your keys.maxFileSize
(number, default:2 * 1024 * 1024
): The maximum amount of bytes to write to a file before switching to a new one. From LevelDB documentation:If your filesystem is more efficient with larger files, you could consider increasing the value. The downside will be longer compactions and hence longer latency / performance hiccups. Another reason to increase this parameter might be when you are initially populating a large database.
It's generally not necessary to call open()
because it's automatically called by the database constructor. It may however be useful to capture an error from failure to open, that would otherwise not surface until another method like db.get()
is called. It's also possible to reopen the database after it has been closed with close()
. Once open()
has then been called, any read & write operations will again be queued internally until opening has finished.
The open()
and close()
methods are idempotent. If the database is already open, the callback
will be called in a next tick. If opening is already in progress, the callback
will be called when that has finished. If closing is in progress, the database will be reopened once closing has finished. Likewise, if close()
is called after open()
, the database will be closed once opening has finished and the prior open()
call will receive an error.
db.close([callback])
Close the database. The callback
function will be called with no arguments if closing succeeded or with a single error
argument if closing failed. If no callback is provided, a promise is returned.
A database has associated resources like file handles and locks. When the database is no longer needed (for the remainder of a program) it's recommended to call db.close()
to free up resources. The underlying LevelDB store cannot be opened by multiple classic-level
instances or processes simultaneously.
After db.close()
has been called, no further read & write operations are allowed unless and until db.open()
is called again. For example, db.get(key)
will yield an error with code LEVEL_DATABASE_NOT_OPEN
. Any unclosed iterators or chained batches will be closed by db.close()
and can then no longer be used even when db.open()
is called again.
A classic-level
database waits for any pending operations to finish before closing. For example:
db.put('key', 'value', function (err) {
// This happens first
})
db.close(function (err) {
// This happens second
})
db.supports
A manifest describing the features supported by this database. Might be used like so:
if (!db.supports.permanence) {
throw new Error('Persistent storage is required')
}
db.get(key[, options][, callback])
Get a value from the database by key
. The optional options
object may contain:
keyEncoding
: custom key encoding for this operation, used to encode thekey
.valueEncoding
: custom value encoding for this operation, used to decode the value.fillCache
(boolean, default:true
): Unless set tofalse
, LevelDB will fill its in-memory LRU cache with data that was read.
The callback
function will be called with an error if the operation failed. If the key was not found, the error will have code LEVEL_NOT_FOUND
. If successful the first argument will be null
and the second argument will be the value. If no callback is provided, a promise is returned.
A classic-level
database supports snapshots (as indicated by db.supports.snapshots
) which means db.get()
should read from a snapshot of the database, created at the time db.get()
was called. This means it should not see the data of simultaneous write operations. However, there's currently a small delay before the snapshot is created.
db.getMany(keys[, options][, callback])
Get multiple values from the database by an array of keys
. The optional options
object may contain:
keyEncoding
: custom key encoding for this operation, used to encode thekeys
.valueEncoding
: custom value encoding for this operation, used to decode values.fillCache
: same as described fordb.get()
.
The callback
function will be called with an error if the operation failed. If successful the first argument will be null
and the second argument will be an array of values with the same order as keys
. If a key was not found, the relevant value will be undefined
. If no callback is provided, a promise is returned.
A classic-level
database supports snapshots (as indicated by db.supports.snapshots
) which means db.getMany()
should read from a snapshot of the database, created at the time db.getMany()
was called. This means it should not see the data of simultaneous write operations. However, there's currently a small delay before the snapshot is created.
db.put(key, value[, options][, callback])
Add a new entry or overwrite an existing entry. The optional options
object may contain:
keyEncoding
: custom key encoding for this operation, used to encode thekey
.valueEncoding
: custom value encoding for this operation, used to encode thevalue
.sync
(boolean, default:false
): if set totrue
, LevelDB will perform a synchronous write of the data although the operation will be asynchronous as far as Node.js or Electron is concerned. Normally, LevelDB passes the data to the operating system for writing and returns immediately. In contrast, a synchronous write will usefsync()
or equivalent, so theput()
call will not complete until the data is actually on disk. Synchronous writes are significantly slower than asynchronous writes.
The callback
function will be called with no arguments if the operation was successful or with an error if it failed. If no callback is provided, a promise is returned.
db.del(key[, options][, callback])
Delete an entry by key
. The optional options
object may contain:
keyEncoding
: custom key encoding for this operation, used to encode thekey
.sync
(boolean, default:false
): same as described fordb.put()
The callback
function will be called with no arguments if the operation was successful or with an error if it failed. If no callback is provided, a promise is returned.
db.batch(operations[, options][, callback])
Perform multiple put and/or del operations in bulk. The operations
argument must be an array containing a list of operations to be executed sequentially, although as a whole they are performed as an atomic operation.
Each operation must be an object with at least a type
property set to either 'put'
or 'del'
. If the type
is 'put'
, the operation must have key
and value
properties. It may optionally have keyEncoding
and / or valueEncoding
properties to encode keys or values with a custom encoding for just that operation. If the type
is 'del'
, the operation must have a key
property and may optionally have a keyEncoding
property.
An operation of either type may also have a sublevel
property, to prefix the key of the operation with the prefix of that sublevel. This allows atomically committing data to multiple sublevels. Keys and values will be encoded by the sublevel, to the same effect as a sublevel.batch(..)
call. In the following example, the first value
will be encoded with 'json'
rather than the default encoding of db
:
const people = db.sublevel('people', { valueEncoding: 'json' })
const nameIndex = db.sublevel('names')
await db.batch([{
type: 'put',
sublevel: people,
key: '123',
value: {
name: 'Alice'
}
}, {
type: 'put',
sublevel: nameIndex,
key: 'Alice',
value: '123'
}])
The optional options
object may contain:
keyEncoding
: custom key encoding for this batch, used to encode keys.valueEncoding
: custom value encoding for this batch, used to encode values.sync
(boolean, default:false
): same as described fordb.put()
.
Encoding properties on individual operations take precedence. In the following example, the first value will be encoded with the 'utf8'
encoding and the second with 'json'
.
await db.batch([
{ type: 'put', key: 'a', value: 'foo' },
{ type: 'put', key: 'b', value: 123, valueEncoding: 'json' }
], { valueEncoding: 'utf8' })
The callback
function will be called with no arguments if the batch was successful or with an error if it failed. If no callback is provided, a promise is returned.
chainedBatch = db.batch()
Create a chained batch
, when batch()
is called with zero arguments. A chained batch can be used to build and eventually commit an atomic batch of operations. Depending on how it's used, it is possible to obtain greater performance with this form of batch()
.
await db.batch()
.del('bob')
.put('alice', 361)
.put('kim', 220)
.write()
iterator = db.iterator([options])
Create an iterator
. The optional options
object may contain the following range options to control the range of entries to be iterated:
gt
(greater than) orgte
(greater than or equal): define the lower bound of the range to be iterated. Only entries where the key is greater than (or equal to) this option will be included in the range. Whenreverse
is true the order will be reversed, but the entries iterated will be the same.lt
(less than) orlte
(less than or equal): define the higher bound of the range to be iterated. Only entries where the key is less than (or equal to) this option will be included in the range. Whenreverse
is true the order will be reversed, but the entries iterated will be the same.reverse
(boolean, default:false
): iterate entries in reverse order. Beware that a reverse seek can be slower than a forward seek.limit
(number, default:Infinity
): limit the number of entries yielded. This number represents a maximum number of entries and will not be reached if the end of the range is reached first. A value ofInfinity
or-1
means there is no limit. Whenreverse
is true the entries with the highest keys will be returned instead of the lowest keys.
The gte
and lte
range options take precedence over gt
and lt
respectively. If no range options are provided, the iterator will visit all entries of the database, starting at the lowest key and ending at the highest key (unless reverse
is true). In addition to range options, the options
object may contain:
keys
(boolean, default:true
): whether to return the key of each entry. If set tofalse
, the iterator will yield keys that areundefined
. Prefer to usedb.keys()
instead.values
(boolean, default:true
): whether to return the value of each entry. If set tofalse
, the iterator will yield values that areundefined
. Prefer to usedb.values()
instead.keyEncoding
: custom key encoding for this iterator, used to encode range options, to encodeseek()
targets and to decode keys.valueEncoding
: custom value encoding for this iterator, used to decode values.fillCache
(boolean, default:false
): if set totrue
, LevelDB will fill its in-memory LRU cache with data that was read.highWaterMarkBytes
(number, default:16 * 1024
): limit the amount of data that the iterator will hold in memory. Explained below.
About high water
While iterator.nextv(size)
is reading entries from LevelDB into memory, it sums up the byte length of those entries. If and when that sum has exceeded highWaterMarkBytes
, reading will stop. If nextv(2)
would normally yield two entries but the first entry is too large, then only one entry will be yielded. More nextv(size)
calls must then be made to get the remaining entries.
If memory usage is less of a concern, increasing highWaterMarkBytes
can increase the throughput of nextv(size)
. If set to 0
then nextv(size)
will never yield more than one entry, as highWaterMarkBytes
will be exceeded on each call. It can not be set to Infinity
. On key- and value iterators (see below) it applies to the byte length of keys or values respectively, rather than the combined byte length of keys and values.
Optimal performance can be achieved by setting highWaterMarkBytes
to at least size
multiplied by the expected byte length of an entry, ensuring that size
is always met. In other words, that nextv(size)
will not stop reading before size
amount of entries have been read into memory. If the iterator is wrapped in a Node.js stream or Web Stream then the size
parameter is dictated by the stream's highWaterMark
option. For example:
const { EntryStream } = require('level-read-stream')
// If an entry is 50 bytes on average
const stream = new EntryStream(db, {
highWaterMark: 1000,
highWaterMarkBytes: 1000 * 50
})
Side note: the "watermark" analogy makes more sense in Node.js streams because its internal highWaterMark
can grow, indicating the highest that the "water" has been. In a classic-level
iterator however, highWaterMarkBytes
is fixed once set. Getting exceeded does not change it.
The highWaterMarkBytes
option is also applied to an internal cache that classic-level
employs for next()
and for await...of
. When next()
is called, that cache is populated with at most 1000 entries, or less than that if highWaterMarkBytes
is exceeded by the total byte length of entries. To avoid reading too eagerly, the cache is not populated on the first next()
call, or the first next()
call after a seek()
. Only on subsequent next()
calls.
keyIterator = db.keys([options])
Create a key iterator, having the same interface as db.iterator()
except that it yields keys instead of entries. If only keys are needed, using db.keys()
may increase performance because values won't have to fetched, copied or decoded. Options are the same as for db.iterator()
except that db.keys()
does not take keys
, values
and valueEncoding
options.
// Iterate lazily
for await (const key of db.keys({ gt: 'a' })) {
console.log(key)
}
// Get all at once. Setting a limit is recommended.
const keys = await db.keys({ gt: 'a', limit: 10 }).all()
valueIterator = db.values([options])
Create a value iterator, having the same interface as db.iterator()
except that it yields values instead of entries. If only values are needed, using db.values()
may increase performance because keys won't have to fetched, copied or decoded. Options are the same as for db.iterator()
except that db.values()
does not take keys
and values
options. Note that it does take a keyEncoding
option, relevant for the encoding of range options.
// Iterate lazily
for await (const value of db.values({ gt: 'a' })) {
console.log(value)
}
// Get all at once. Setting a limit is recommended.
const values = await db.values({ gt: 'a', limit: 10 }).all()
db.clear([options][, callback])
Delete all entries or a range. Not guaranteed to be atomic. Accepts the following options (with the same rules as on iterators):
gt
(greater than) orgte
(greater than or equal): define the lower bound of the range to be deleted. Only entries where the key is greater than (or equal to) this option will be included in the range. Whenreverse
is true the order will be reversed, but the entries deleted will be the same.lt
(less than) orlte
(less than or equal): define the higher bound of the range to be deleted. Only entries where the key is less than (or equal to) this option will be included in the range. Whenreverse
is true the order will be reversed, but the entries deleted will be the same.reverse
(boolean, default:false
): delete entries in reverse order. Only effective in combination withlimit
, to delete the last N entries.limit
(number, default:Infinity
): limit the number of entries to be deleted. This number represents a maximum number of entries and will not be reached if the end of the range is reached first. A value ofInfinity
or-1
means there is no limit. Whenreverse
is true the entries with the highest keys will be deleted instead of the lowest keys.keyEncoding
: custom key encoding for this operation, used to encode range options.
The gte
and lte
range options take precedence over gt
and lt
respectively. If no options are provided, all entries will be deleted. The callback
function will be called with no arguments if the operation was successful or with an error if it failed. If no callback is provided, a promise is returned.
sublevel = db.sublevel(name[, options])
Create a sublevel that has the same interface as db
(except for additional classic-level
methods like db.approximateSize()
) and prefixes the keys of operations before passing them on to db
. The name
argument is required and must be a string.
const example = db.sublevel('example')
await example.put('hello', 'world')
await db.put('a', '1')
// Prints ['hello', 'world']
for await (const [key, value] of example.iterator()) {
console.log([key, value])
}
Sublevels effectively separate a database into sections. Think SQL tables, but evented, ranged and realtime! Each sublevel is an AbstractLevel
instance with its own keyspace, events and encodings. For example, it's possible to have one sublevel with 'buffer'
keys and another with 'utf8'
keys. The same goes for values. Like so:
db.sublevel('one', { valueEncoding: 'json' })
db.sublevel('two', { keyEncoding: 'buffer' })
An own keyspace means that sublevel.iterator()
only includes entries of that sublevel, sublevel.clear()
will only delete entries of that sublevel, and so forth. Range options get prefixed too.
Fully qualified keys (as seen from the parent database) take the form of prefix + key
where prefix
is separator + name + separator
. If name
is empty, the effective prefix is two separators. Sublevels can be nested: if db
is itself a sublevel then the effective prefix is a combined prefix, e.g. '!one!!two!'
. Note that a parent database will see its own keys as well as keys of any nested sublevels:
// Prints ['!example!hello', 'world'] and ['a', '1']
for await (const [key, value] of db.iterator()) {
console.log([key, value])
}
:pushpin: The key structure is equal to that of
subleveldown
which offered sublevels before they were built-in toabstract-level
and thusclassic-level
. This means that anclassic-level
sublevel can read sublevels previously created with (and populated by)subleveldown
.
Internally, sublevels operate on keys that are either a string, Buffer or Uint8Array, depending on choice of encoding. Which is to say: binary keys are fully supported. The name
must however always be a string and can only contain ASCII characters.
The optional options
object may contain:
separator
(string, default:'!'
): Character for separating sublevel names from user keys and each other. Must sort before characters used inname
. An error will be thrown if that's not the case.keyEncoding
(string or object, default'utf8'
): encoding to use for keysvalueEncoding
(string or object, default'utf8'
): encoding to use for values.
The keyEncoding
and valueEncoding
options are forwarded to the AbstractLevel
constructor and work the same, as if a new, separate database was created. They default to 'utf8'
regardless of the encodings configured on db
. Other options are forwarded too but classic-level
has no relevant options at the time of writing. For example, setting the createIfMissing
option will have no effect. Why is that?
Like regular databases, sublevels open themselves but they do not affect the state of the parent database. This means a sublevel can be individually closed and (re)opened. If the sublevel is created while the parent database is opening, it will wait for that to finish. If the parent database is closed, then opening the sublevel will fail and subsequent operations on the sublevel will yield errors with code LEVEL_DATABASE_NOT_OPEN
.
db.approximateSize(start, end[, options][, callback])
Get the approximate number of bytes of file system space used by the range [start..end)
. The result might not include recently written data. The optional options
object may contain:
keyEncoding
: custom key encoding for this operation, used to encodestart
andend
.
The callback
function will be called with a single error argument if the operation failed. If successful the first argument will be null
and the second argument will be the approximate size as a number. If no callback is provided, a promise is returned. This method is an additional method that is not part of the abstract-level
interface.
db.compactRange(start, end[, options][, callback])
Manually trigger a database compaction in the range [start..end]
. The optional options
object may contain:
keyEncoding
: custom key encoding for this operation, used to encodestart
andend
.
The callback
function will be called with no arguments if the operation was successful or with an error if it failed. If no callback is provided, a promise is returned. This method is an additional method that is not part of the abstract-level
interface.
db.getProperty(property)
Get internal details from LevelDB. When issued with a valid property
string, a string value is returned synchronously. Valid properties are:
leveldb.num-files-at-levelN
: return the number of files at level N, where N is an integer representing a valid level (e.g. "0").leveldb.stats
: returns a multi-line string describing statistics about LevelDB's internal operation.leveldb.sstables
: returns a multi-line string describing all of the sstables that make up contents of the current database.
This method is an additional method that is not part of the abstract-level
interface.
chainedBatch
chainedBatch.put(key, value[, options])
Queue a put
operation on this batch, not committed until write()
is called. This will throw a LEVEL_INVALID_KEY
or LEVEL_INVALID_VALUE
error if key
or value
is invalid. The optional options
object may contain:
keyEncoding
: custom key encoding for this operation, used to encode thekey
.valueEncoding
: custom value encoding for this operation, used to encode thevalue
.sublevel
(sublevel instance): act as though theput
operation is performed on the given sublevel, to similar effect assublevel.batch().put(key, value)
. This allows atomically committing data to multiple sublevels. Thekey
will be prefixed with theprefix
of the sublevel, and thekey
andvalue
will be encoded by the sublevel (using the default encodings of the sublevel unlesskeyEncoding
and / orvalueEncoding
are provided).
chainedBatch.del(key[, options])
Queue a del
operation on this batch, not committed until write()
is called. This will throw a LEVEL_INVALID_KEY
error if key
is invalid. The optional options
object may contain:
keyEncoding
: custom key encoding for this operation, used to encode thekey
.sublevel
(sublevel instance): act as though thedel
operation is performed on the given sublevel, to similar effect assublevel.batch().del(key)
. This allows atomically committing data to multiple sublevels. Thekey
will be prefixed with theprefix
of the sublevel, and thekey
will be encoded by the sublevel (using the default key encoding of the sublevel unlesskeyEncoding
is provided).
chainedBatch.clear()
Clear all queued operations on this batch.
chainedBatch.write([options][, callback])
Commit the queued operations for this batch. All operations will be written atomically, that is, they will either all succeed or fail with no partial commits.
The optional options
object may contain:
sync
(boolean, default:false
): same as described fordb.put()
.
Note that write()
does not take encoding options. Those can only be set on put()
and del()
because classic-level
synchronously forwards such calls to LevelDB and thus need keys and values to be encoded at that point.
The callback
function will be called with no arguments if the batch was successful or with an error if it failed. If no callback is provided, a promise is returned.
After write()
or close()
has been called, no further operations are allowed.
chainedBatch.close([callback])
Free up underlying resources. This should be done even if the chained batch has zero queued operations. Automatically called by write()
so normally not necessary to call, unless the intent is to discard a chained batch without committing it. The callback
function will be called with no arguments. If no callback is provided, a promise is returned. Closing the batch is an idempotent operation, such that calling close()
more than once is allowed and makes no difference.
chainedBatch.length
The number of queued operations on the current batch.
chainedBatch.db
A reference to the database that created this chained batch.
iterator
An iterator allows one to lazily read a range of entries stored in the database. The entries will be sorted by keys in lexicographic order (in other words: byte order) which in short means key 'a'
comes before 'b'
and key '10'
comes before '2'
.
An iterator reads from a snapshot of the database, created at the time db.iterator()
was called. This means the iterator will not see the data of simultaneous write operations.
Iterators can be consumed with for await...of
and iterator.all()
, or by manually calling iterator.next()
or nextv()
in succession. In the latter case, iterator.close()
must always be called. In contrast, finishing, throwing, breaking or returning from a for await...of
loop automatically calls iterator.close()
, as does iterator.all()
.
An iterator reaches its natural end in the following situations:
- The end of the database has been reached
- The end of the range has been reached
- The last
iterator.seek()
was out of range.
An iterator keeps track of calls that are in progress. It doesn't allow concurrent next()
, nextv()
or all()
calls (including a combination thereof) and will throw an error with code LEVEL_ITERATOR_BUSY
if that happens:
// Not awaited and no callback provided
iterator.next()
try {
// Which means next() is still in progress here
iterator.all()
} catch (err) {
console.log(err.code) // 'LEVEL_ITERATOR_BUSY'
}
for await...of iterator
Yields entries, which are arrays containing a key
and value
. The type of key
and value
depends on the options passed to db.iterator()
.
try {
for await (const [key, value] of db.iterator()) {
console.log(key)
}
} catch (err) {
console.error(err)
}
iterator.next([callback])
Advance to the next entry and yield that entry. If an error occurs, the callback
function will be called with an error. Otherwise, the callback
receives null
, a key
and a value
. The type of key
and value
depends on the options passed to db.iterator()
. If the iterator has reached its natural end, both key
and value
will be undefined
.
If no callback is provided, a promise is returned for either an array (containing a key
and value
) or undefined
if the iterator reached its natural end.
Note: iterator.close()
must always be called once there's no intention to call next()
or nextv()
again. Even if such calls yielded an error and even if the iterator reached its natural end. Not closing the iterator will result in memory leaks and may also affect performance of other operations if many iterators are unclosed and each is holding a snapshot of the database.
iterator.nextv(size[, options][, callback])
Advance repeatedly and get at most size
amount of entries in a single call. Can be faster than repeated next()
calls. The size
argument must be an integer and has a soft minimum of 1. There are no options
currently.
If an error occurs, the callback
function will be called with an error. Otherwise, the callback
receives null
and an array of entries, where each entry is an array containing a key and value. The natural end of the iterator will be signaled by yielding an empty array. If no callback is provided, a promise is returned.
const iterator = db.iterator()
while (true) {
const entries = await iterator.nextv(100)
if (entries.length === 0) {
break
}
for (const [key, value] of entries) {
// ..
}
}
await iterator.close()
iterator.all([options][, callback])
Advance repeatedly and get all (remaining) entries as an array, automatically closing the iterator. Assumes that those entries fit in memory. If that's not the case, instead use next()
, nextv()
or for await...of
. There are no options
currently. If an error occurs, the callback
function will be called with an error. Otherwise, the callback
receives null
and an array of entries, where each entry is an array containing a key and value. If no callback is provided, a promise is returned.
const entries = await db.iterator({ limit: 100 }).all()
for (const [key, value] of entries) {
// ..
}
iterator.seek(target[, options])
Seek to the key closest to target
. Subsequent calls to iterator.next()
, nextv()
or all()
(including implicit calls in a for await...of
loop) will yield entries with keys equal to or larger than target
, or equal to or smaller than target
if the reverse
option passed to db.iterator()
was true.
The optional options
object may contain:
keyEncoding
: custom key encoding, used to encode thetarget
. By default thekeyEncoding
option of the iterator is used or (if that wasn't set) thekeyEncoding
of the database.
If range options like gt
were passed to db.iterator()
and target
does not fall within that range, the iterator will reach its natural end.
iterator.close([callback])
Free up underlying resources. The callback
function will be called with no arguments. If no callback is provided, a promise is returned. Closing the iterator is an idempotent operation, such that calling close()
more than once is allowed and makes no difference.
If a next()
,nextv()
or all()
call is in progress, closing will wait for that to finish. After close()
has been called, further calls to next()
,nextv()
or all()
will yield an error with code LEVEL_ITERATOR_NOT_OPEN
.
iterator.db
A reference to the database that created this iterator.
iterator.count
Read-only getter that indicates how many keys have been yielded so far (by any method) excluding calls that errored or yielded undefined
.
iterator.limit
Read-only getter that reflects the limit
that was set in options. Greater than or equal to zero. Equals Infinity
if no limit, which allows for easy math:
const hasMore = iterator.count < iterator.limit
const remaining = iterator.limit - iterator.count
keyIterator
A key iterator has the same interface as iterator
except that its methods yield keys instead of entries. For the keyIterator.next(callback)
method, this means that the callback
will receive two arguments (an error and key) instead of three. Usage is otherwise the same.
valueIterator
A value iterator has the same interface as iterator
except that its methods yield values instead of entries. For the valueIterator.next(callback)
method, this means that the callback
will receive two arguments (an error and value) instead of three. Usage is otherwise the same.
sublevel
A sublevel is an instance of the AbstractSublevel
class (as found in abstract-level
) which extends AbstractLevel
and thus has the same API as documented above, except for additional classic-level
methods like db.approximateSize()
. Sublevels have a few additional properties.
sublevel.prefix
Prefix of the sublevel. A read-only string property.
const example = db.sublevel('example')
const nested = example.sublevel('nested')
console.log(example.prefix) // '!example!'
console.log(nested.prefix) // '!example!!nested!'
sublevel.db
Parent database. A read-only property.
const example = db.sublevel('example')
const nested = example.sublevel('nested')
console.log(example.db === db) // true
console.log(nested.db === db) // true
ClassicLevel.destroy(location[, callback])
Completely remove an existing LevelDB database directory. You can use this method in place of a full directory removal if you want to be sure to only remove LevelDB-related files. If the directory only contains LevelDB files, the directory itself will be removed as well. If there are additional, non-LevelDB files in the directory, those files and the directory will be left alone.
The callback
function will be called when the destroy operation is complete, with a possible error argument. If no callback is provided, a promise is returned. This method is an additional method that is not part of the abstract-level
interface.
Before calling destroy()
, close a database if it's using the same location
:
const db = new ClassicLevel('./db')
await db.close()
await ClassicLevel.destroy('./db')
ClassicLevel.repair(location[, callback])
Attempt a restoration of a damaged database. It can also be used to perform a compaction of the LevelDB log into table files. From LevelDB documentation:
If a DB cannot be opened, you may attempt to call this method to resurrect as much of the contents of the database as possible. Some data may be lost, so be careful when calling this function on a database that contains important information.
The callback
function will be called when the repair operation is complete, with a possible error argument. If no callback is provided, a promise is returned. This method is an additional method that is not part of the abstract-level
interface.
You will find information on the repair operation in the LOG
file inside the database directory.
Before calling repair()
, close a database if it's using the same location
.
Development
Getting Started
This repository uses git submodules. Clone it recursively:
git clone --recurse-submodules https://github.com/Level/classic-level.git
Alternatively, initialize submodules inside the working tree:
cd classic-level
git submodule update --init --recursive
Contributing
Level/classic-level
is an OPEN Open Source Project. This means that:
Individuals making significant and valuable contributions are given commit-access to the project to contribute as they see fit. This project is more like an open wiki than a standard guarded open source project.
See the Contribution Guide for more details.
Publishing
- Increment the version:
npm version ..
- Push to GitHub:
git push --follow-tags
- Wait for CI to complete
- Download prebuilds into
./prebuilds
:npm run download-prebuilds
- Optionally verify loading a prebuild:
npm run test-prebuild
- Optionally verify which files npm will include:
canadian-pub
- Finally:
npm publish
Donate
Support us with a monthly donation on Open Collective and help us continue our work.