npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

ciecam02-ts

v0.1.0

Published

TypeScript port of ciecam - An implementation of CIECAM02

Downloads

1,329

Readme

ciecam02-ts

This library provides tools to work with the CIECAM02 color space.

It is a TypeScript port of @baskerville/ciecam02 with slight modifications (removed dependency, cleaned up code) and TypeScript declarations.

This hybrid package provides both CommonJS and ES module.

Install

// If you use yarn
yarn add ciecam02-ts

// If you use npm
npm install ciecam02-ts

Usage

API

Converters

cam(viewingConditions?, correlates?) -> {
    fromXyz(XYZ) -> CAM,
    toXyz(CAM) -> XYZ,
    fillOut(correlates, inputs) -> outputs
}

ucs(name?="UCS") -> {
    fromCam(CAM) -> UCS,
    toCam(UCS) -> CAM,
    distance(UCS1, UCS2) -> number
}

hq: {
    fromHue(h) -> H,
    toHue(H) -> h,
    fromNotation(N) -> H,
    toNotation(H) -> N
}

Default viewing conditions

{
    whitePoint: illuminant.D65,
    adaptingLuminance: 40,
    backgroundLuminance: 20,
    surroundType: "average",
    discounting: false
}

Gamut helpers

gamut(xyz, cam, epsilon?=1e-6) -> {
    contains(CAM) -> (boolean, RGB),
    limit(camIn, camOut, prec?=1e-3) -> CAM,
    spine(t) -> CAM
}

Misc helpers

cfs(str) -> correlates,
lerp(CAM1, CAM2, t) -> CAM

Example

See also this source file.

// The reference for understanding CIECAM02 is:
// http://www.springer.com/cda/content/document/cda_downloaddocument/9781441961891-c1.pdf

import * as ciebase from "ciebase-ts";
import { Vector3D } from "ciebase-ts";
import * as ciecam02 from "../lib";
import { IJchProps, IViewingConditions } from "../lib";

const { illuminant, rgb, workspace } = ciebase;
const { cfs, lerp, hq } = ciecam02;

const { min, max } = Math;

//
// Shared settings for the examples
//

const xyz = ciebase.xyz(workspace.sRGB, illuminant.D65);

const viewingConditions: IViewingConditions = {
    adaptingLuminance: 40,
    backgroundLuminance: 20,
    discounting: false,
    surroundType: "average",
    whitePoint: illuminant.D65,
};

// By default, 7 correlates are returned when converting from XYZ to CAM.
// For the purpose of this example, we will limit ourselves to the JCh correlates.
// (J is the lightness, C the chroma and h the hue.)
const cam = ciecam02.cam(viewingConditions, cfs("JCh"));
const gamut = ciecam02.gamut(xyz, cam);

const ucs = ciecam02.ucs();

function hexToCam(hex: string) {
    return cam.fromXyz(xyz.fromRgb(rgb.fromHex(hex)));
}

function camToHex(CAM: IJchProps) {
    return rgb.toHex(xyz.toRgb(cam.toXyz(CAM)));
}

function crop(v: number) {
    return max(0, min(1, v));
}

//
// Example 1
//

const example1 = () => {
    const camSand = hexToCam("e0cda9");
    // {J: 77.82, C: 16.99, h: 81.01}
    const camOrange = { ...camSand, C: 90 };
    // {J: 77.82, C: 90.00, h: 81.01}
    const [isInside, rgbOrange] = gamut.contains(camOrange);
    // [false, [1.09, 0.73, -0.7]]

    if (!isInside) {
        // The gamut.limit function interpolates between an inside and an outside point
        // and return an inside point as close as possible to the boundary.
        // (The gamut is the set of CAM values that maps to valid RGB coordinates.)
        const camOrange1 = gamut.limit(camSand, camOrange);
        // {J: 77.82, C: 55.23, h: 81.01}
        // The alternative method is to simply crop the RGB coordinates
        const camOrange2 = cam.fromXyz(xyz.fromRgb(rgbOrange.map(crop) as Vector3D));
        // {J: 74.43, C: 67.60, h: 81.30}

        // tslint:disable-next-line:no-console
        console.log([camOrange1, camOrange2].map(camToHex));             // #ffc447   #ffb900
    } else {
        // tslint:disable-next-line:no-console
        console.log(rgb.toHex(rgbOrange));
    }
};

//
// Example 2
//

const example2 = () => {
    function gradient(camStart: IJchProps, camEnd: IJchProps, steps = 3) {
        const result = [];
        for (let ε = 1 / (steps + 1), t = 0; steps > -2; t += ε, steps -= 1) {
            const camBetween = lerp(camStart as any, camEnd as any, crop(t));
            const hex = rgb.toHex(xyz.toRgb(cam.toXyz(camBetween as any) as Vector3D).map(crop) as Vector3D);
            result.push(hex);
        }
        return result;
    }

    const hexCodes = gradient(
        // camStart
        hexToCam("17657d"),
        // camEnd
        hexToCam("fee7f0"),
        // steps
        8,
    );

    // tslint:disable-next-line:no-console
    console.log(hexCodes);
};

//
// Example 3
//

const objectMap = <T, R>(
    obj: { [key: string]: T },
    fn: (key: string, value: T, index: number, o: { [key: string]: T }) => R,
) => {
    const r: { [key: string]: R } = {};
    Object.keys(obj).forEach((key, index) => {
        r[key] = fn(key, obj[key], index, obj);
    });
    return r;
};

const example3 = () => {
    function ucsLimit(camIn: IJchProps, camOut: IJchProps, prec = 1e-3) {
        // UCS is based on the JMh correlates
        let [ucsIn, ucsOut] = [camIn, camOut].map((v) => ucs.fromCam(cam.fillOut(cfs("JMh"), v)));
        while (ucs.distance(ucsIn, ucsOut) > prec) {
            const ucsMid = lerp(ucsIn as any, ucsOut as any, 0.5);
            const [isInside] = gamut.contains(ucs.toCam(ucsMid as any) as any);
            if (isInside) {
                ucsIn = ucsMid as any;
            } else {
                ucsOut = ucsMid as any;
            }
        }
        return cam.fillOut(objectMap(camIn as any, () => true), ucs.toCam(ucsIn as any) as any);
    }

    // The hue notation is a different writting of the hue quadrant,
    // of the form a(p?b)? where a and b are in {R, Y, G, B} (a ≠ b)
    // and p is in ]0, 100[. apb = b(100-p)a, ab = a50b.
    function hue(N: string) {
        return hq.toHue(hq.fromNotation(N));
    }

    const topChroma = max(...["f00", "0f0", "00f"].map((v) => hexToCam(v).C));
    const camRed: IJchProps    = { J: 60, C: topChroma + 1, h: hue("R") };
    const camYellow: IJchProps = { J: 90, C: topChroma + 1, h: hue("Y") };
    const camGreen: IJchProps  = { J: 90, C: topChroma + 1, h: hue("G") };
    const camBlue: IJchProps   = { J: 70, C: topChroma + 1, h: hue("B") };

    const hexCodes = [camRed, camYellow, camGreen, camBlue].map((CAM) => {
        CAM = ucsLimit(gamut.spine(CAM.J / 100) as any, CAM);
        return camToHex(CAM);
    });

    // tslint:disable-next-line:no-console
    console.log(hexCodes);
};

//
// Main
//

const main = () => {
    // tslint:disable-next-line:no-console
    console.log("Example 1");
    example1();
    // tslint:disable-next-line:no-console
    console.log("Example 2");
    example2();
    // tslint:disable-next-line:no-console
    console.log("Example 3");
    example3();
    // tslint:disable-next-line:no-console
    console.log("Done");
};

main();

License: MIT

See the LICENSE file.